Suppr超能文献

血管平滑肌收缩的演变机制突出了血管疾病的关键靶点。

Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease.

机构信息

Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA.

Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA.

出版信息

Biochem Pharmacol. 2018 Jul;153:91-122. doi: 10.1016/j.bcp.2018.02.012. Epub 2018 Feb 13.

Abstract

Vascular smooth muscle (VSM) plays an important role in the regulation of vascular function. Identifying the mechanisms of VSM contraction has been a major research goal in order to determine the causes of vascular dysfunction and exaggerated vasoconstriction in vascular disease. Major discoveries over several decades have helped to better understand the mechanisms of VSM contraction. Ca has been established as a major regulator of VSM contraction, and its sources, cytosolic levels, homeostatic mechanisms and subcellular distribution have been defined. Biochemical studies have also suggested that stimulation of Gq protein-coupled membrane receptors activates phospholipase C and promotes the hydrolysis of membrane phospholipids into inositol 1,4,5-trisphosphate (IP) and diacylglycerol (DAG). IP stimulates initial Ca release from the sarcoplasmic reticulum, and is buttressed by Ca influx through voltage-dependent, receptor-operated, transient receptor potential and store-operated channels. In order to prevent large increases in cytosolic Ca concentration ([Ca]), Ca removal mechanisms promote Ca extrusion via the plasmalemmal Ca pump and Na/Ca exchanger, and Ca uptake by the sarcoplasmic reticulum and mitochondria, and the coordinated activities of these Ca handling mechanisms help to create subplasmalemmal Ca domains. Threshold increases in [Ca] form a Ca-calmodulin complex, which activates myosin light chain (MLC) kinase, and causes MLC phosphorylation, actin-myosin interaction, and VSM contraction. Dissociations in the relationships between [Ca], MLC phosphorylation, and force have suggested additional Ca sensitization mechanisms. DAG activates protein kinase C (PKC) isoforms, which directly or indirectly via mitogen-activated protein kinase phosphorylate the actin-binding proteins calponin and caldesmon and thereby enhance the myofilaments force sensitivity to Ca. PKC-mediated phosphorylation of PKC-potentiated phosphatase inhibitor protein-17 (CPI-17), and RhoA-mediated activation of Rho-kinase (ROCK) inhibit MLC phosphatase and in turn increase MLC phosphorylation and VSM contraction. Abnormalities in the Ca handling mechanisms and PKC and ROCK activity have been associated with vascular dysfunction in multiple vascular disorders. Modulators of [Ca], PKC and ROCK activity could be useful in mitigating the increased vasoconstriction associated with vascular disease.

摘要

血管平滑肌(VSM)在调节血管功能方面起着重要作用。确定 VSM 收缩的机制一直是主要的研究目标,以便确定血管功能障碍和血管疾病中血管过度收缩的原因。几十年来的重大发现有助于更好地理解 VSM 收缩的机制。钙已被确定为 VSM 收缩的主要调节剂,其来源、细胞浆水平、稳态机制和亚细胞分布已得到定义。生化研究还表明,刺激 Gq 蛋白偶联膜受体激活磷脂酶 C 并促进膜磷脂水解为肌醇 1,4,5-三磷酸(IP)和二酰基甘油(DAG)。IP 刺激肌浆网中初始 Ca 释放,并通过电压依赖性、受体操作、瞬时受体电位和储存操作通道促进 Ca 内流。为了防止细胞浆 Ca 浓度([Ca])的大幅增加,Ca 去除机制通过质膜 Ca 泵和 Na/Ca 交换器促进 Ca 外排,并通过肌浆网和线粒体摄取 Ca,这些 Ca 处理机制的协调活动有助于形成亚质膜 Ca 域。[Ca]的阈值增加形成 Ca-钙调蛋白复合物,激活肌球蛋白轻链(MLC)激酶,并导致 MLC 磷酸化、肌动球蛋白相互作用和 VSM 收缩。[Ca]、MLC 磷酸化和力之间关系的分离表明存在其他 Ca 敏化机制。DAG 激活蛋白激酶 C(PKC)同工型,其通过有丝分裂原激活的蛋白激酶直接或间接磷酸化肌动球蛋白结合蛋白钙调蛋白和钙调蛋白,从而增强肌丝对 Ca 的力敏感性。PKC 介导的 PKC 增强型磷酸酶抑制剂蛋白-17(CPI-17)的磷酸化和 RhoA 介导的 Rho-激酶(ROCK)的激活抑制 MLC 磷酸酶,进而增加 MLC 磷酸化和 VSM 收缩。多种血管疾病中,Ca 处理机制和 PKC 和 ROCK 活性的异常与血管功能障碍有关。[Ca]、PKC 和 ROCK 活性的调节剂可能有助于减轻与血管疾病相关的血管过度收缩。

相似文献

1
Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease.
Biochem Pharmacol. 2018 Jul;153:91-122. doi: 10.1016/j.bcp.2018.02.012. Epub 2018 Feb 13.
2
3
Protein Kinase C as Regulator of Vascular Smooth Muscle Function and Potential Target in Vascular Disorders.
Adv Pharmacol. 2017;78:203-301. doi: 10.1016/bs.apha.2016.06.002. Epub 2016 Jul 18.
4
Protein kinase C isoforms as specific targets for modulation of vascular smooth muscle function in hypertension.
Biochem Pharmacol. 2005 Nov 25;70(11):1537-47. doi: 10.1016/j.bcp.2005.07.017. Epub 2005 Sep 1.
5
Ca2+-dependent rapid Ca2+ sensitization of contraction in arterial smooth muscle.
Circ Res. 2007 Jan 5;100(1):121-9. doi: 10.1161/01.RES.0000253902.90489.df. Epub 2006 Dec 7.
6
Rho-Mancing to Sensitize Calcium Signaling for Contraction in the Vasculature: Role of Rho Kinase.
Adv Pharmacol. 2017;78:303-322. doi: 10.1016/bs.apha.2016.09.001. Epub 2016 Oct 27.
7
Signaling pathways mediating gastrointestinal smooth muscle contraction and MLC20 phosphorylation by motilin receptors.
Am J Physiol Gastrointest Liver Physiol. 2005 Jan;288(1):G23-31. doi: 10.1152/ajpgi.00305.2004.
10
Size-dependent heterogeneity of contractile Ca2+ sensitization in rat arterial smooth muscle.
J Physiol. 2012 Nov 1;590(21):5401-23. doi: 10.1113/jphysiol.2012.241315. Epub 2012 Aug 28.

引用本文的文献

1
Valproic Acid Inhibits RhoA-Mediated Vascular Smooth Muscle Cell Contraction.
J Korean Med Sci. 2025 Aug 25;40(33):e199. doi: 10.3346/jkms.2025.40.e199.
2
The machinery of healthy vasoconstriction: an overview.
Pflugers Arch. 2025 Jul 11. doi: 10.1007/s00424-025-03103-6.
3
Calcium Signaling Dynamics in Vascular Cells and Their Dysregulation in Vascular Disease.
Biomolecules. 2025 Jun 18;15(6):892. doi: 10.3390/biom15060892.
5
The machinery of healthy vasodilatation: an overview.
Pflugers Arch. 2025 Jun 6. doi: 10.1007/s00424-025-03096-2.
6
MLC2: Physiological Functions and Potential Roles in Tumorigenesis.
Cell Biochem Biophys. 2025 Mar 16. doi: 10.1007/s12013-025-01721-6.
10
Functional bias of contractile control in mouse resistance arteries.
Sci Rep. 2024 Oct 22;14(1):24940. doi: 10.1038/s41598-024-75838-8.

本文引用的文献

1
Septin structure and filament assembly.
Biophys Rev. 2017 Oct;9(5):481-500. doi: 10.1007/s12551-017-0320-4. Epub 2017 Sep 13.
2
Ca Regulation of Ca3.3 T-type Ca Channel Is Mediated by Calmodulin.
Mol Pharmacol. 2017 Sep;92(3):347-357. doi: 10.1124/mol.117.108530. Epub 2017 Jul 10.
3
A Novel PKC Inhibitor Shows Promise for Amphetamine Use Disorders.
Neuropsychopharmacology. 2017 Sep;42(10):1929-1930. doi: 10.1038/npp.2017.116. Epub 2017 Jun 8.
4
Stretch-activated TRPV2 channels: Role in mediating cardiopathies.
Prog Biophys Mol Biol. 2017 Nov;130(Pt B):273-280. doi: 10.1016/j.pbiomolbio.2017.05.007. Epub 2017 May 22.
6
Calcium Channels in Vascular Smooth Muscle.
Adv Pharmacol. 2017;78:49-87. doi: 10.1016/bs.apha.2016.08.002. Epub 2016 Oct 14.
7
Rho-Mancing to Sensitize Calcium Signaling for Contraction in the Vasculature: Role of Rho Kinase.
Adv Pharmacol. 2017;78:303-322. doi: 10.1016/bs.apha.2016.09.001. Epub 2016 Oct 27.
8
Protein Kinase C as Regulator of Vascular Smooth Muscle Function and Potential Target in Vascular Disorders.
Adv Pharmacol. 2017;78:203-301. doi: 10.1016/bs.apha.2016.06.002. Epub 2016 Jul 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验