Niu Shuqiang, Nichols Jeffrey A, Ichiye Toshiko
Department of Chemistry, Georgetown University, Washington, DC 20057-1227.
J Chem Theory Comput. 2009 May 12;5(5):1361-1368. doi: 10.1021/ct800357c.
Quantum chemical calculations of metal clusters in proteins for redox studies require both computational feasibility as well as accuracies of at least ∼50 mV for redox energies but only ∼0.05 Å for bond lengths. Thus, optimization of spin-unrestricted density functional theory (DFT) methods, especially the hybrid generalized gradient approximation functionals, for energies while maintaining good geometries is essential. Here, different DFT functionals with effective core potential (ECP) and full core basis sets for Fe(SCH(3))(4) and Fe(SCH(3))(3), which are analogs of the iron-sulfur protein rubredoxin, are investigated in comparison to experiment as well as other more computationally intensive electron correlation methods. In particular, redox energies are calibrated against gas-phase photoelectron spectroscopy data so no approximations for the environment are needed. B3LYP gives the best balance of accuracy in energy and geometry compared B97gga1 and BHandH and is better for energies than Møller-Plesset perturbation theory series (MP2, MP3, MP4SDQ) and comparable to coupled cluster [CCSD, CCSD(T)] methods. Of the full core basis sets tested, the 6-31G** basis sets give good geometries, and addition of diffuse functions to only the sulfur significantly improves the energies. Moreover, a basis set with an ECP on only the iron gives a less accurate but still reasonable geometries and energies.
用于氧化还原研究的蛋白质中金属簇的量子化学计算,对于氧化还原能量而言,既需要计算的可行性,又需要至少约50 mV的精度,而对于键长仅需要约0.05 Å的精度。因此,优化自旋非限制密度泛函理论(DFT)方法,特别是混合广义梯度近似泛函,以在保持良好几何结构的同时获得准确的能量至关重要。本文研究了不同的带有有效核势(ECP)和全核基组的DFT泛函,用于Fe(SCH(3))(4)和Fe(SCH(3))(3),它们是铁硫蛋白红氧还蛋白的类似物,并与实验以及其他计算量更大的电子相关方法进行了比较。特别是,氧化还原能量是根据气相光电子能谱数据校准的,因此不需要对环境进行近似。与B97gga1和BHandH相比,B3LYP在能量和几何结构的精度上达到了最佳平衡,并且在能量方面比Møller-Plesset微扰理论系列(MP2、MP3、MP4SDQ)更好,与耦合簇[CCSD、CCSD(T)]方法相当。在所测试的全核基组中,6-31G**基组给出了良好的几何结构,仅在硫原子上添加弥散函数能显著提高能量。此外,仅在铁原子上带有ECP的基组给出的几何结构和能量虽不太准确但仍合理。