Suppr超能文献

纵向/聚类数据部分线性可加模型的高效半参数边际估计

Efficient Semiparametric Marginal Estimation for the Partially Linear Additive Model for Longitudinal/Clustered Data.

作者信息

Carroll Raymond, Maity Arnab, Mammen Enno, Yu Kyusang

机构信息

Department of Statistics, 3143 TAMU, Texas A&M University, College Station, Texas 77843, USA,

出版信息

Stat Biosci. 2009 May 1;1(1):10-31. doi: 10.1007/s12561-009-9000-7.

Abstract

We consider the efficient estimation of a regression parameter in a partially linear additive nonparametric regression model from repeated measures data when the covariates are multivariate. To date, while there is some literature in the scalar covariate case, the problem has not been addressed in the multivariate additive model case. Ours represents a first contribution in this direction. As part of this work, we first describe the behavior of nonparametric estimators for additive models with repeated measures when the underlying model is not additive. These results are critical when one considers variants of the basic additive model. We apply them to the partially linear additive repeated-measures model, deriving an explicit consistent estimator of the parametric component; if the errors are in addition Gaussian, the estimator is semiparametric efficient. We also apply our basic methods to a unique testing problem that arises in genetic epidemiology; in combination with a projection argument we develop an efficient and easily computed testing scheme. Simulations and an empirical example from nutritional epidemiology illustrate our methods.

摘要

当协变量为多变量时,我们考虑从重复测量数据中对部分线性加性非参数回归模型中的回归参数进行有效估计。迄今为止,虽然在标量协变量情况下有一些文献,但在多变量加性模型情况下该问题尚未得到解决。我们的工作代表了在这个方向上的首个贡献。作为这项工作的一部分,当基础模型不是加性模型时,我们首先描述具有重复测量的加性模型的非参数估计量的行为。当考虑基本加性模型的变体时,这些结果至关重要。我们将它们应用于部分线性加性重复测量模型,得出参数分量的显式一致估计量;如果误差另外是高斯分布的,该估计量是半参数有效的。我们还将我们的基本方法应用于遗传流行病学中出现的一个独特检验问题;结合投影论证,我们开发了一种高效且易于计算的检验方案。模拟和营养流行病学的一个实证例子说明了我们的方法。

相似文献

2
Additive Partial Linear Models with Measurement Errors.
Biometrika. 2008;95(3). doi: 10.1093/biomet/asn024.
4
Empirical Bayes estimation for additive hazards regression models.
Biometrika. 2009 Sep;96(3):545-558. doi: 10.1093/biomet/asp024. Epub 2009 Jun 26.
5
PENALIZED VARIABLE SELECTION PROCEDURE FOR COX MODELS WITH SEMIPARAMETRIC RELATIVE RISK.
Ann Stat. 2010 Aug 1;38(4):2092-2117. doi: 10.1214/09-AOS780.
6
Nonparametric estimation and testing of fixed effects panel data models.
J Econom. 2008;144(1):257-275. doi: 10.1016/j.jeconom.2008.01.005.
7
SIMEX and standard error estimation in semiparametric measurement error models.
Electron J Stat. 2009 Jan 1;3:318-348. doi: 10.1214/08-EJS341.
8
A partially linear additive model for clustered proportion data.
Stat Med. 2018 Mar 15;37(6):1009-1030. doi: 10.1002/sim.7573. Epub 2017 Dec 15.
9
Partially Linear Varying Coefficient Models Stratified by a Functional Covariate.
Stat Probab Lett. 2012 Oct;82(10):1807-1814. doi: 10.1016/j.spl.2012.06.002. Epub 2012 Jun 9.
10
Doubly robust and efficient estimators for heteroscedastic partially linear single-index models allowing high dimensional covariates.
J R Stat Soc Series B Stat Methodol. 2013 Mar;75(2):305-322. doi: 10.1111/j.1467-9868.2012.01040.x.

引用本文的文献

1
Variable selection in strong hierarchical semiparametric models for longitudinal data.
Stat Interface. 2015;8(3):355-365. doi: 10.4310/SII.2015.v8.n3.a9.
2
Estimation of a partially linear additive model for data from an outcome-dependent sampling design with a continuous outcome.
Biostatistics. 2016 Oct;17(4):663-76. doi: 10.1093/biostatistics/kxw015. Epub 2016 Mar 22.
3
Marginal longitudinal semiparametric regression via penalized splines.
Stat Probab Lett. 2010 Aug;80(15-16):1242-1252. doi: 10.1016/j.spl.2010.04.002.

本文引用的文献

1
Testing in semiparametric models with interaction, with applications to gene-environment interactions.
J R Stat Soc Series B Stat Methodol. 2009 Jan 1;71(1):75-96. doi: 10.1111/j.1467-9868.2008.00671.x.
2
Powerful multilocus tests of genetic association in the presence of gene-gene and gene-environment interactions.
Am J Hum Genet. 2006 Dec;79(6):1002-16. doi: 10.1086/509704. Epub 2006 Oct 20.
3
Structure of dietary measurement error: results of the OPEN biomarker study.
Am J Epidemiol. 2003 Jul 1;158(1):14-21; discussion 22-6. doi: 10.1093/aje/kwg091.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验