Carroll Raymond, Maity Arnab, Mammen Enno, Yu Kyusang
Department of Statistics, 3143 TAMU, Texas A&M University, College Station, Texas 77843, USA,
Stat Biosci. 2009 May 1;1(1):10-31. doi: 10.1007/s12561-009-9000-7.
We consider the efficient estimation of a regression parameter in a partially linear additive nonparametric regression model from repeated measures data when the covariates are multivariate. To date, while there is some literature in the scalar covariate case, the problem has not been addressed in the multivariate additive model case. Ours represents a first contribution in this direction. As part of this work, we first describe the behavior of nonparametric estimators for additive models with repeated measures when the underlying model is not additive. These results are critical when one considers variants of the basic additive model. We apply them to the partially linear additive repeated-measures model, deriving an explicit consistent estimator of the parametric component; if the errors are in addition Gaussian, the estimator is semiparametric efficient. We also apply our basic methods to a unique testing problem that arises in genetic epidemiology; in combination with a projection argument we develop an efficient and easily computed testing scheme. Simulations and an empirical example from nutritional epidemiology illustrate our methods.
当协变量为多变量时,我们考虑从重复测量数据中对部分线性加性非参数回归模型中的回归参数进行有效估计。迄今为止,虽然在标量协变量情况下有一些文献,但在多变量加性模型情况下该问题尚未得到解决。我们的工作代表了在这个方向上的首个贡献。作为这项工作的一部分,当基础模型不是加性模型时,我们首先描述具有重复测量的加性模型的非参数估计量的行为。当考虑基本加性模型的变体时,这些结果至关重要。我们将它们应用于部分线性加性重复测量模型,得出参数分量的显式一致估计量;如果误差另外是高斯分布的,该估计量是半参数有效的。我们还将我们的基本方法应用于遗传流行病学中出现的一个独特检验问题;结合投影论证,我们开发了一种高效且易于计算的检验方案。模拟和营养流行病学的一个实证例子说明了我们的方法。