Ma Yanyuan, Zhu Liping
Texas A&M University, College Station, USA.
J R Stat Soc Series B Stat Methodol. 2013 Mar;75(2):305-322. doi: 10.1111/j.1467-9868.2012.01040.x.
We study the heteroscedastic partially linear single-index model with an unspecified error variance function, which allows for high dimensional covariates in both the linear and the single-index components of the mean function. We propose a class of consistent estimators of the parameters by using a proper weighting strategy. An interesting finding is that the linearity condition which is widely assumed in the dimension reduction literature is not necessary for methodological or theoretical development: it contributes only to the simplification of non-optimal consistent estimation. We also find that the performance of the usual weighted least square type of estimators deteriorates when the non-parametric component is badly estimated. However, estimators in our family automatically provide protection against such deterioration, in that the consistency can be achieved even if the baseline non-parametric function is completely misspecified. We further show that the most efficient estimator is a member of this family and can be easily obtained by using non-parametric estimation. Properties of the estimators proposed are presented through theoretical illustration and numerical simulations. An example on gender discrimination is used to demonstrate and to compare the practical performance of the estimators.
我们研究了具有未指定误差方差函数的异方差部分线性单指标模型,该模型允许均值函数的线性和单指标成分中存在高维协变量。我们通过使用适当的加权策略提出了一类参数的一致估计量。一个有趣的发现是,在降维文献中广泛假设的线性条件对于方法或理论发展并非必要:它仅有助于简化非最优一致估计。我们还发现,当非参数成分估计不佳时,通常的加权最小二乘类型估计量的性能会变差。然而,我们提出的估计量家族能自动防止这种性能变差,因为即使基线非参数函数完全误设,也能实现一致性。我们进一步表明,最有效的估计量是这个家族的一员,并且可以通过使用非参数估计轻松获得。通过理论说明和数值模拟展示了所提出估计量的性质。使用一个关于性别歧视的例子来演示和比较估计量的实际性能。