School of Science, Nantong University, Nantong, P. R. China.
Department of Mathematics, City University of Hong Kong, Kowloon Tong, Hong Kong.
Stat Med. 2018 Mar 15;37(6):1009-1030. doi: 10.1002/sim.7573. Epub 2017 Dec 15.
Proportion data with support lying in the interval [0,1] are a commonplace in various domains of medicine and public health. When these data are available as clusters, it is important to correctly incorporate the within-cluster correlation to improve the estimation efficiency while conducting regression-based risk evaluation. Furthermore, covariates may exhibit a nonlinear relationship with the (proportion) responses while quantifying disease status. As an alternative to various existing classical methods for modeling proportion data (such as augmented Beta regression) that uses maximum likelihood, or generalized estimating equations, we develop a partially linear additive model based on the quadratic inference function. Relying on quasi-likelihood estimation techniques and polynomial spline approximation for unknown nonparametric functions, we obtain the estimators for both parametric part and nonparametric part of our model and study their large-sample theoretical properties. We illustrate the advantages and usefulness of our proposition over other alternatives via extensive simulation studies, and application to a real dataset from a clinical periodontal study.
比例数据的支持范围在 [0,1] 之间,在医学和公共卫生的各个领域都很常见。当这些数据以聚类形式出现时,正确地纳入聚类内相关性对于提高回归风险评估的估计效率非常重要。此外,在量化疾病状态时,协变量可能与(比例)响应呈非线性关系。作为对各种现有的经典方法(例如基于最大似然的增广 Beta 回归)的替代方法,这些方法用于对比例数据建模,我们基于二次推断函数开发了一个部分线性加性模型。我们依靠拟似然估计技术和未知非参数函数的多项式样条逼近,得到模型的参数部分和非参数部分的估计量,并研究它们的大样本理论性质。我们通过广泛的模拟研究和对临床牙周研究中真实数据集的应用,展示了我们的建议相对于其他替代方案的优势和实用性。