Suppr超能文献

将探测器模糊纳入小动物PET扫描仪图像重建对图像噪声的影响

Impact on Image Noise of Incorporating Detector Blurring into Image Reconstruction for a Small Animal PET Scanner.

作者信息

Lee Kisung, Miyaoka Robert S, Lewellen Tom K, Alessio Adam M, Kinahan Paul E

出版信息

IEEE Trans Nucl Sci. 2009 Oct 19;56(5):2769-2776. doi: 10.1109/tns.2009.2021610.

Abstract

We study the noise characteristics of an image reconstruction algorithm that incorporates a model of the non-stationary detector blurring (DB) for a mouse-imaging positron emission tomography (PET) scanner. The algorithm uses ordered subsets expectation maximization (OSEM) image reconstruction, which is used to suppress statistical noise. Including the non-stationary detector blurring in the reconstruction process (OSEM(DB)) has been shown to increase contrast in images reconstructed from measured data acquired on the fully-3D MiCES PET scanner developed at the University of Washington. As an extension, this study uses simulation studies with a fully-3D acquisition mode and our proposed FORE+OSEM(DB) reconstruction process to evaluate the volumetric contrast versus noise trade-offs of this approach. Multiple realizations were simulated to estimate the true noise properties of the algorithm. The results show that incorporation of detector blurring (FORE+OSEM(DB)) into the reconstruction process improves the contrast/noise trade-offs compared to FORE+OSEM in a radially dependent manner. Adding post reconstruction 3D Gaussian smoothing to FORE+OSEM and FORE+OSEM(DB) reduces the contrast versus noise advantages of FORE+OSEM(DB).

摘要

我们研究了一种图像重建算法的噪声特性,该算法为小鼠成像正电子发射断层扫描(PET)扫描仪纳入了非平稳探测器模糊(DB)模型。该算法使用有序子集期望最大化(OSEM)图像重建,用于抑制统计噪声。在华盛顿大学开发的全3D MiCES PET扫描仪上采集的测量数据重建的图像中,在重建过程中纳入非平稳探测器模糊(OSEM(DB))已被证明可提高对比度。作为一项扩展研究,本研究采用全3D采集模式的模拟研究以及我们提出的FORE+OSEM(DB)重建过程,来评估该方法的体积对比度与噪声之间的权衡。模拟了多个实例以估计该算法的真实噪声特性。结果表明,与FORE+OSEM相比,在重建过程中纳入探测器模糊(FORE+OSEM(DB))以径向依赖的方式改善了对比度/噪声权衡。对FORE+OSEM和FORE+OSEM(DB)添加重建后3D高斯平滑会降低FORE+OSEM(DB)在对比度与噪声方面的优势。

相似文献

本文引用的文献

6
Noise properties of the EM algorithm: I. Theory.期望最大化(EM)算法的噪声特性:I. 理论
Phys Med Biol. 1994 May;39(5):833-46. doi: 10.1088/0031-9155/39/5/004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验