Li Huilin, Lahiri P
Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892;
J Multivar Anal. 2010 Apr 1;101(4):882. doi: 10.1016/j.jmva.2009.10.009.
For the well-known Fay-Herriot small area model, standard variance component estimation methods frequently produce zero estimates of the strictly positive model variance. As a consequence, an empirical best linear unbiased predictor of a small area mean, commonly used in the small area estimation, could reduce to a simple regression estimator, which typically has an overshrinking problem. We propose an adjusted maximum likelihood estimator of the model variance that maximizes an adjusted likelihood defined as a product of the model variance and a standard likelihood (e.g., profile or residual likelihood) function. The adjustment factor was suggested earlier by Carl Morris in the context of approximating a hierarchical Bayes solution where the hyperparameters, including the model variance, are assumed to follow a prior distribution. Interestingly, the proposed adjustment does not affect the mean squared error property of the model variance estimator or the corresponding empirical best linear unbiased predictors of the small area means in a higher order asymptotic sense. However, as demonstrated in our simulation study, the proposed adjustment has a considerable advantage in the small sample inference, especially in estimating the shrinkage parameters and in constructing the parametric bootstrap prediction intervals of the small area means, which require the use of a strictly positive consistent model variance estimate.
对于著名的费伊 - 赫里奥特小区域模型,标准方差分量估计方法常常会对严格为正的模型方差给出零估计值。因此,小区域估计中常用的小区域均值的经验最佳线性无偏预测器可能会退化为一个简单的回归估计器,而这通常存在过度收缩的问题。我们提出了一种模型方差的调整最大似然估计器,它通过最大化一个调整后的似然函数来实现,该调整后的似然函数被定义为模型方差与一个标准似然函数(如轮廓似然或残差似然)的乘积。这个调整因子是卡尔·莫里斯早些时候在近似分层贝叶斯解的背景下提出的,在该背景下,包括模型方差在内的超参数被假定遵循一个先验分布。有趣的是,从高阶渐近意义上讲,所提出的调整不会影响模型方差估计器的均方误差性质,也不会影响小区域均值相应的经验最佳线性无偏预测器。然而,正如我们在模拟研究中所展示的那样,所提出的调整在小样本推断中具有相当大的优势,特别是在估计收缩参数以及构建小区域均值的参数自助预测区间时,这些都需要使用严格为正的一致模型方差估计值。