Suppr超能文献

高效处理用高孔隙率纤维海绵填充的产甲烷生物反应器中的垃圾浆。

Efficient treatment of garbage slurry in methanogenic bioreactor packed by fibrous sponge with high porosity.

机构信息

Biotechnology Sector, Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko-shi, Chiba-ken, 270-1194, Japan.

出版信息

Appl Microbiol Biotechnol. 2010 May;86(5):1573-83. doi: 10.1007/s00253-010-2469-7. Epub 2010 Feb 17.

Abstract

Adding a supporting material to a methanogenic bioreactor treating garbage slurry can improve efficiency of methane production. However, little is known on how characteristics (e.g., porosity and hydrophobicity) of the supporting material affect the bioreactor degrading garbage slurry. We describe the reactor performances and microbial communities in bioreactors containing hydrophilic or hydrophobic sheets, or fibrous hydrophilic or hydrophobic sponges. The porosity affected the efficiency of methane production and solid waste removal more than the hydrophilic or hydrophobic nature of the supporting material. When the terminal restriction fragment length polymorphism technique was used at a lower organic loading rate (OLR), microbial diversities in the suspended fraction were retained on the hydrophobic, but not the hydrophilic, sheets. Moreover, real-time quantitative polymerase chain reaction (PCR) performed at a higher OLR revealed that the excellent performance of reactors containing fibrous sponges with high porosity (98%) was supported by a clear increase in the numbers of methanogens on these sponges, resulting in larger total numbers of methanogens in the reactors. In addition, the bacterial communities in fractions retained on both the hydrophobic and hydrophilic fibrous sponges differed from those in the suspended fraction, thus increasing bacterial diversity in the reactor. Thus, higher porosity of the supporting material improves the bioreactor performance by increasing the amount of methanogens and bacterial diversity; surface hydrophobicity contributes to maintaining the suspended microbial community.

摘要

向产甲烷生物反应器中添加支持材料可以提高甲烷生产效率。然而,对于支持材料的特性(如孔隙率和疏水性)如何影响生物反应器处理垃圾浆的情况,人们知之甚少。我们描述了含有亲水性或疏水性片材、或纤维状亲水性或疏水性海绵的生物反应器的性能和微生物群落。孔隙率比支持材料的亲水性或疏水性对甲烷生产效率和固体废物去除的影响更大。当在较低的有机负荷率(OLR)下使用末端限制性片段长度多态性(T-RFLP)技术时,悬浮部分中的微生物多样性保留在疏水性片材上,但不在亲水性片材上。此外,在较高的 OLR 下进行的实时定量聚合酶链反应(PCR)显示,具有高孔隙率(98%)的纤维状海绵的反应器性能优异,这得益于这些海绵上产甲烷菌数量的明显增加,从而导致反应器中总产甲烷菌数量增加。此外,保留在疏水性和亲水性纤维状海绵上的各个部分中的细菌群落与悬浮部分中的细菌群落不同,从而增加了反应器中的细菌多样性。因此,支持材料的更高孔隙率通过增加产甲烷菌和细菌多样性来提高生物反应器的性能;表面疏水性有助于维持悬浮微生物群落。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验