Suppr超能文献

气道壁僵硬会增加壁面剪切峰值:刚性和顺应性气道中的流固相互作用研究。

Airway wall stiffening increases peak wall shear stress: a fluid-structure interaction study in rigid and compliant airways.

机构信息

Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242, USA.

出版信息

Ann Biomed Eng. 2010 May;38(5):1836-53. doi: 10.1007/s10439-010-9956-y. Epub 2010 Feb 17.

Abstract

The airflow characteristics in a computed tomography (CT) based human airway bifurcation model with rigid and compliant walls are investigated numerically. An in-house three-dimensional (3D) fluid-structure interaction (FSI) method is applied to simulate the flow at different Reynolds numbers and airway wall stiffness. As the Reynolds number increases, the airway wall deformation increases and the secondary flow becomes more prominent. It is found that the peak wall shear stress on the rigid airway wall can be five times stronger than that on the compliant airway wall. When adding tethering forces to the model, we find that these forces, which produce larger airway deformation than without tethering, lead to more skewed velocity profiles in the lower branches and further reduced wall shear stresses via a larger airway lumen. This implies that pathologic changes in the lung such as fibrosis or remodeling of the airway wall-both of which can serve to restrain airway wall motion-have the potential to increase wall shear stress and thus can form a positive feed-back loop for the development of altered flow profiles and airway remodeling. These observations are particularly interesting as we try to understand flow and structural changes seen in, for instance, asthma, emphysema, cystic fibrosis, and interstitial lung disease.

摘要

对具有刚性和弹性壁的基于计算机断层扫描 (CT) 的人体气道分叉模型中的气流特性进行了数值研究。应用内部的三维 (3D) 流固耦合 (FSI) 方法来模拟不同雷诺数和气道壁刚度下的流动。随着雷诺数的增加,气道壁变形增加,二次流变得更加明显。结果发现,刚性气道壁上的壁面剪切应力峰值可以比弹性气道壁上的强五倍。当向模型中添加系绳力时,我们发现这些力会导致气道变形大于没有系绳的情况,从而导致较低分支中的速度分布更加偏斜,并通过更大的气道内腔进一步降低壁面剪切应力。这意味着肺部的病理变化,如纤维化或气道壁重塑——这两者都可以限制气道壁运动——有可能增加壁面剪切应力,从而为改变的流动模式和气道重塑的发展形成正反馈循环。这些观察结果特别有趣,因为我们试图了解例如哮喘、肺气肿、囊性纤维化和间质性肺疾病中所见的流动和结构变化。

相似文献

1
Airway wall stiffening increases peak wall shear stress: a fluid-structure interaction study in rigid and compliant airways.
Ann Biomed Eng. 2010 May;38(5):1836-53. doi: 10.1007/s10439-010-9956-y. Epub 2010 Feb 17.
2
A numerical simulation study of airway flow: Impact of bronchial stenosis.
Med Eng Phys. 2025 Mar;137:104303. doi: 10.1016/j.medengphy.2025.104303. Epub 2025 Feb 8.
4
Effect of intimal flap motion on flow in acute type B aortic dissection by using fluid-structure interaction.
Int J Numer Method Biomed Eng. 2020 Dec;36(12):e3399. doi: 10.1002/cnm.3399. Epub 2020 Sep 28.
5
Numerical investigation of blood flow in a deformable coronary bifurcation and non-planar branch.
Bioimpacts. 2014;4(4):199-204. doi: 10.15171/bi.2014.017. Epub 2014 Dec 30.
6
Hemodynamic analysis of a compliant femoral artery bifurcation model using a fluid structure interaction framework.
Ann Biomed Eng. 2008 Nov;36(11):1753-63. doi: 10.1007/s10439-008-9558-0. Epub 2008 Sep 16.
8
Fluid-Structure Interaction Simulations of Repaired Type A Aortic Dissection: a Comprehensive Comparison With Rigid Wall Models.
Front Physiol. 2022 Jun 14;13:913457. doi: 10.3389/fphys.2022.913457. eCollection 2022.
10
Unsteady and three-dimensional simulation of blood flow in the human aortic arch.
J Biomech Eng. 2002 Aug;124(4):378-87. doi: 10.1115/1.1487357.

引用本文的文献

1
Forward Computational Modeling of Respiratory Airflow.
Appl Sci (Basel). 2024 Dec 2;14(24). doi: 10.3390/app142411591. Epub 2024 Dec 12.
2
Characterization of upper airway airflow dynamics in young adults with isolated Robin sequence: An exploratory investigation.
J Oral Biol Craniofac Res. 2025 Mar-Apr;15(2):234-239. doi: 10.1016/j.jobcr.2025.01.009. Epub 2025 Feb 10.
3
The Coding Logic of Interoception.
Annu Rev Physiol. 2024 Feb 12;86:301-327. doi: 10.1146/annurev-physiol-042222-023455. Epub 2023 Dec 7.
4
A multidimensional coding architecture of the vagal interoceptive system.
Nature. 2022 Mar;603(7903):878-884. doi: 10.1038/s41586-022-04515-5. Epub 2022 Mar 16.
5
6
Origins of and lessons from quantitative functional X-ray computed tomography of the lung.
Br J Radiol. 2022 Apr 1;95(1132):20211364. doi: 10.1259/bjr.20211364. Epub 2022 Mar 1.
8
Computational fluid dynamics of the airways after left-upper pulmonary lobectomy: A case study.
Int J Numer Method Biomed Eng. 2021 Jul;37(7):e3462. doi: 10.1002/cnm.3462. Epub 2021 Jun 18.
9
Macrophage-stroma interactions in fibrosis: biochemical, biophysical, and cellular perspectives.
J Pathol. 2021 Jul;254(4):344-357. doi: 10.1002/path.5632. Epub 2021 Mar 3.

本文引用的文献

1
On intra- and intersubject variabilities of airflow in the human lungs.
Phys Fluids (1994). 2009 Oct;21(10):101901. doi: 10.1063/1.3247170. Epub 2009 Oct 13.
2
Mass preserving nonrigid registration of CT lung images using cubic B-spline.
Med Phys. 2009 Sep;36(9):4213-22. doi: 10.1118/1.3193526.
3
Computational fluid dynamics.
IEEE Eng Med Biol Mag. 2009 May-Jun;28(3):25-33. doi: 10.1109/MEMB.2009.932480.
4
Hemodynamic analysis of a compliant femoral artery bifurcation model using a fluid structure interaction framework.
Ann Biomed Eng. 2008 Nov;36(11):1753-63. doi: 10.1007/s10439-008-9558-0. Epub 2008 Sep 16.
5
Role of mechanical stress in regulating airway surface hydration and mucus clearance rates.
Respir Physiol Neurobiol. 2008 Nov 30;163(1-3):189-201. doi: 10.1016/j.resp.2008.04.020. Epub 2008 Jun 8.
6
An Unstructured Finite Volume Approach for Structural Dynamics in Response to Fluid Motions.
Comput Struct. 2008 Apr;86(7-8):684-701. doi: 10.1016/j.compstruc.2007.07.008.
7
Shear stress regulates aquaporin-5 and airway epithelial barrier function.
Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3345-50. doi: 10.1073/pnas.0712287105. Epub 2008 Feb 27.
8
Airway strain during mechanical ventilation in an intact animal model.
Am J Respir Crit Care Med. 2007 Oct 15;176(8):786-94. doi: 10.1164/rccm.200701-088OC. Epub 2007 Jul 12.
9
Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways.
Respir Physiol Neurobiol. 2007 Aug 1;157(2-3):295-309. doi: 10.1016/j.resp.2007.02.006. Epub 2007 Feb 14.
10
Differential effects of cyclic and constant stress on ATP release and mucociliary transport by human airway epithelia.
J Physiol. 2007 Apr 15;580(Pt. 2):577-92. doi: 10.1113/jphysiol.2006.126086. Epub 2007 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验