Department of Bioengineering, University of Washington, Box 355061, N210G North Foege Bldg, 1705 NE Pacific St., Seattle, WA 98195-5061, USA.
Ann Biomed Eng. 2010 Apr;38(4):1683-701. doi: 10.1007/s10439-010-9948-y.
New mathematical model equations for O(2) and CO(2) saturations of hemoglobin (S(HbO)(2) and S(HbCO)(2) are developed here from the equilibrium binding of O(2) and CO(2) with hemoglobin inside RBCs. They are in the form of an invertible Hill-type equation with the apparent Hill coefficients KHbO(2) and KHbCO(2) in the expressions for SHbO(2) and SHbCO(2) dependent on the levels of O(2) and CO(2) partial pressures (P(O)(2) and P(CO)(2)), pH, 2,3-DPG concentration, and temperature in blood. The invertibility of these new equations allows PO(2) and PCO(2) to be computed efficiently from S(HbO)(2) and S(HbCO)(2) and vice versa. The oxyhemoglobin (HbO(2)) and carbamino-hemoglobin (HbCO(2)) dissociation curves computed from these equations are in good agreement with the published experimental and theoretical curves in the literature. The model solutions describe that, at standard physiological conditions, the hemoglobin is about 97.2% saturated by O(2) and the amino group of hemoglobin is about 13.1% saturated by CO(2). The O(2) and CO(2) content in whole blood are also calculated here from the gas solubilities, hematocrits, and the new formulas for S(HbO)(2) and S(HbCO)(2). Because of the mathematical simplicity and invertibility, these new formulas can be conveniently used in the modeling of simultaneous transport and exchange of O(2) and CO(2) in the alveoli-blood and blood-tissue exchange systems.
这里从 RBC 内血红蛋白与 O(2) 和 CO(2) 的平衡结合出发,推导出了 O(2) 和 CO(2) 饱和度的新的数学模型方程,用于血红蛋白(S(HbO)(2) 和 S(HbCO)(2))。它们采用可反演的 Hill 型方程的形式,表观 Hill 系数 KHbO(2) 和 KHbCO(2) 在依赖于 O(2) 和 CO(2) 分压(P(O)(2) 和 P(CO)(2))、pH 值、2,3-DPG 浓度和血液温度的 S(HbO)(2) 和 S(HbCO)(2) 表达式中。这些新方程的可反演性允许从 S(HbO)(2) 和 S(HbCO)(2) 高效地计算 PO(2) 和 PCO(2),反之亦然。从这些方程计算出的氧合血红蛋白(HbO(2)) 和氨基甲酰血红蛋白(HbCO(2)) 离解曲线与文献中公布的实验和理论曲线吻合良好。模型解表明,在标准生理条件下,血红蛋白约 97.2%被 O(2) 饱和,血红蛋白的氨基约 13.1%被 CO(2) 饱和。还根据气体溶解度、血细胞比容和 S(HbO)(2) 和 S(HbCO)(2) 的新公式计算了全血中的 O(2) 和 CO(2) 含量。由于数学的简单性和可反演性,这些新公式可以方便地用于肺泡-血液和血液-组织交换系统中 O(2) 和 CO(2) 同时传输和交换的建模。