Dash Ranjan K, Bassingthwaighte James B
Department of Pediatrics, Division of Cardiology, Case Western Reserve University, Euclid Avenue, Cleveland OH, USA.
Ann Biomed Eng. 2004 Dec;32(12):1676-93. doi: 10.1007/s10439-004-7821-6.
New mathematical model equations for O2 and CO2 saturations of hemoglobin (S(HbO2) and S(HbCO2)) are developed here from the equilibrium binding of O2 and CO2 with hemoglobin inside RBCs. They are in the form of an invertible Hill-type equation with the apparent Hill coefficients K(HbO2) and K(HbCO2) in the expressions for S(HbO2) and S(HbCO2) dependent on the levels of O2 and CO2 partial pressures (P(O2) and P(CO2), pH, 2,3-DPG concentration, and temperature in blood. The invertibility of these new equations allows P(O2) and P(CO2) to be computed efficiently from S(HbO2) and S(Hbco2) and vice-versa. The oxyhemoglobin (HbO2) and carbamino-hemoglobin (HbCO2) dissociation curves computed from these equations are in good agreement with the published experimental and theoretical curves in the literature. The model solutions describe that, at standard physiological conditions, the hemoglobin is about 97.2% saturated by O2 and the amino group of hemoglobin is about 13.1% saturated by CO2. The O2 and CO2 content in whole blood are also calculated here from the gas solubilities, hematocrits, and the new formulas for S(HbO2) and S(HbCO2). Because of the mathematical simplicity and invertibility, these new formulas can be conveniently used in the modeling of simultaneous transport and exchange of O2 and CO2 in the alveoli-blood and blood-tissue exchange systems.
本文根据红细胞内氧气和二氧化碳与血红蛋白的平衡结合情况,推导出了血红蛋白氧饱和度(S(HbO2))和二氧化碳饱和度(S(HbCO2))的新数学模型方程。它们采用可逆希尔型方程的形式,在S(HbO2)和S(HbCO2)的表达式中,表观希尔系数K(HbO2)和K(HbCO2)取决于血液中的氧气和二氧化碳分压水平(P(O2)和P(CO2))、pH值、2,3 - 二磷酸甘油酸(2,3-DPG)浓度以及温度。这些新方程的可逆性使得能够根据S(HbO2)和S(Hbco2)高效地计算出P(O2)和P(CO2),反之亦然。由这些方程计算得到的氧合血红蛋白(HbO2)和氨基甲酰血红蛋白(HbCO2)解离曲线与文献中已发表的实验和理论曲线高度吻合。模型解表明,在标准生理条件下,血红蛋白的氧气饱和度约为97.2%,血红蛋白的氨基二氧化碳饱和度约为13.1%。本文还根据气体溶解度、血细胞比容以及S(HbO2)和S(HbCO2)的新公式计算了全血中的氧气和二氧化碳含量。由于数学形式简单且具有可逆性,这些新公式可方便地用于肺泡 - 血液和血液 - 组织交换系统中氧气和二氧化碳同时运输与交换的建模。