Suppr超能文献

处理蛋氨酸/同型半胱氨酸硫:半胱氨酸代谢为牛磺酸和无机硫。

Dealing with methionine/homocysteine sulfur: cysteine metabolism to taurine and inorganic sulfur.

机构信息

Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA.

出版信息

J Inherit Metab Dis. 2011 Feb;34(1):17-32. doi: 10.1007/s10545-009-9006-9. Epub 2010 Feb 17.

Abstract

Synthesis of cysteine as a product of the transsulfuration pathway can be viewed as part of methionine or homocysteine degradation, with cysteine being the vehicle for sulfur conversion to end products (sulfate, taurine) that can be excreted in the urine. Transsulfuration is regulated by stimulation of cystathionine β-synthase and inhibition of methylene tetrahydrofolate reductase in response to changes in the level of S-adenosylmethionine, and this promotes homocysteine degradation when methionine availability is high. Cysteine is catabolized by several desulfuration reactions that release sulfur in a reduced oxidation state, generating sulfane sulfur or hydrogen sulfide (H₂S), which can be further oxidized to sulfate. Cysteine desulfuration is accomplished by alternate reactions catalyzed by cystathionine β-synthase and cystathionine γ-lyase. Cysteine is also catabolized by pathways that require the initial oxidation of the cysteine thiol by cysteine dioxygenase to form cysteinesulfinate. The oxidative pathway leads to production of taurine and sulfate in a ratio of approximately 2:1. Relative metabolism of cysteine by desulfuration versus oxidative pathways is influenced by cysteine dioxygenase activity, which is low in animals fed low-protein diets and high in animals fed excess sulfur amino acids. Thus, desulfuration reactions dominate when cysteine is deficient, whereas oxidative catabolism dominates when cysteine is in excess. In rats consuming a diet with an adequate level of sulfur amino acids, about two thirds of cysteine catabolism occurs by oxidative pathways and one third by desulfuration pathways. Cysteine dioxygenase is robustly regulated in response to cysteine availability and may function to provide a pathway to siphon cysteine to less toxic metabolites than those produced by cysteine desulfuration reactions.

摘要

半胱氨酸作为转硫途径的产物可以被视为蛋氨酸或同型半胱氨酸降解的一部分,半胱氨酸是将硫转化为终产物(硫酸盐、牛磺酸)的载体,可以通过尿液排出体外。转硫作用受胱硫醚-β-合酶的刺激和亚甲基四氢叶酸还原酶的抑制调节,以响应 S-腺苷甲硫氨酸水平的变化,当蛋氨酸供应充足时,这促进同型半胱氨酸降解。半胱氨酸通过几种脱硫反应被分解,这些反应以还原氧化态释放硫,生成硫烷硫或硫化氢 (H₂S),可以进一步氧化为硫酸盐。半胱氨酸脱硫通过胱硫醚-β-合酶和胱硫醚γ-裂合酶催化的交替反应来完成。半胱氨酸也通过需要半胱氨酸双加氧酶初始氧化半胱氨酸巯基形成半胱氨酸亚磺酸盐的途径被分解。氧化途径导致牛磺酸和硫酸盐的产生比例约为 2:1。半胱氨酸通过脱硫与氧化途径的相对代谢受半胱氨酸双加氧酶活性的影响,低蛋白饮食喂养的动物中该酶活性低,而过量硫氨基酸喂养的动物中该酶活性高。因此,当半胱氨酸缺乏时,脱硫反应占主导地位,而当半胱氨酸过量时,氧化分解代谢占主导地位。在摄入含硫氨基酸水平充足的饮食的大鼠中,大约三分之二的半胱氨酸分解代谢通过氧化途径发生,三分之一通过脱硫途径发生。半胱氨酸双加氧酶根据半胱氨酸的可用性进行强有力的调节,可能起到将半胱氨酸输送到比脱硫反应产生的代谢物毒性更小的代谢物的途径的作用。

相似文献

1
Dealing with methionine/homocysteine sulfur: cysteine metabolism to taurine and inorganic sulfur.
J Inherit Metab Dis. 2011 Feb;34(1):17-32. doi: 10.1007/s10545-009-9006-9. Epub 2010 Feb 17.
3
Metabolism of sulfur-containing amino acids.
Annu Rev Nutr. 1986;6:179-209. doi: 10.1146/annurev.nu.06.070186.001143.
5
Lessons Learned from Inherited Metabolic Disorders of Sulfur-Containing Amino Acids Metabolism.
J Nutr. 2020 Oct 1;150(Suppl 1):2506S-2517S. doi: 10.1093/jn/nxaa134.
7
Sulfur amino acid metabolism in Zucker diabetic fatty rats.
Biochem Pharmacol. 2015 Aug 1;96(3):256-66. doi: 10.1016/j.bcp.2015.05.014. Epub 2015 Jun 3.
9
The sulfur-containing amino acids: an overview.
J Nutr. 2006 Jun;136(6 Suppl):1636S-1640S. doi: 10.1093/jn/136.6.1636S.
10
Pathways of assimilative sulfur metabolism in Pseudomonas putida.
J Bacteriol. 1999 Sep;181(18):5833-7. doi: 10.1128/JB.181.18.5833-5837.1999.

引用本文的文献

4
Protective Role of HS in High Glucose-Induced Cardiomyocyte and Endothelial Cell Dysfunction: A Mechanistic Review.
Diabetes Metab Syndr Obes. 2025 May 1;18:1373-1388. doi: 10.2147/DMSO.S505138. eCollection 2025.
5
Natural sulfur compounds in mental health and neurological disorders: insights from observational and intervention studies.
Front Nutr. 2025 Apr 9;12:1534000. doi: 10.3389/fnut.2025.1534000. eCollection 2025.
6
Identifying the active microbes driving organosulfur cycling from taurine and methionine in marine sediment.
ISME Commun. 2025 Feb 25;5(1):ycaf033. doi: 10.1093/ismeco/ycaf033. eCollection 2025 Jan.
10
Aqueous humor metabolomic profiling identifies a distinct signature in pseudoexfoliation syndrome.
Front Mol Biosci. 2025 Jan 23;11:1487115. doi: 10.3389/fmolb.2024.1487115. eCollection 2024.

本文引用的文献

1
Significance of endogenous sulphur-containing gases in the cardiovascular system.
Clin Exp Pharmacol Physiol. 2010 Jul;37(7):745-52. doi: 10.1111/j.1440-1681.2009.05249.x. Epub 2009 Jun 29.
2
3
Signaling by gasotransmitters.
Sci Signal. 2009 Apr 28;2(68):re2. doi: 10.1126/scisignal.268re2.
4
Physiological and pharmacological features of the novel gasotransmitter: hydrogen sulfide.
Biochim Biophys Acta. 2009 Jul;1787(7):864-72. doi: 10.1016/j.bbabio.2009.03.005. Epub 2009 Mar 13.
6
Loss of ETHE1, a mitochondrial dioxygenase, causes fatal sulfide toxicity in ethylmalonic encephalopathy.
Nat Med. 2009 Feb;15(2):200-5. doi: 10.1038/nm.1907. Epub 2009 Jan 11.
8
H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase.
Science. 2008 Oct 24;322(5901):587-90. doi: 10.1126/science.1162667.
9
3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain.
Antioxid Redox Signal. 2009 Apr;11(4):703-14. doi: 10.1089/ars.2008.2253.
10
A putative Fe2+-bound persulfenate intermediate in cysteine dioxygenase.
Biochemistry. 2008 Nov 4;47(44):11390-2. doi: 10.1021/bi801546n. Epub 2008 Oct 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验