Neuropsychiatric Research Laboratory, Department of Psychiatry, Heinrich-Heine University Duesseldorf, Germany.
Hum Brain Mapp. 2010 Nov;31(11):1702-12. doi: 10.1002/hbm.20967.
Previous studies on the spatio-temporal dynamics of cortical pain processing using electroencephalography (EEG), magnetoencephalography (MEG), or intracranial recordings point towards a high degree of parallelism, e.g. parallel instead of sequential activation of primary and secondary somatosensory areas or simultaneous activation of somatosensory areas and the mid-cingulate cortex. However, because of the inverse problem, EEG and MEG provide only limited spatial resolution and certainty about the generators of cortical pain-induced electromagnetic activity, especially when multiple sources are simultaneously active. On the other hand, intracranial recordings are invasive and do not provide whole-brain coverage. In this study, we thought to investigate the spatio-temporal dynamics of cortical pain processing in 10 healthy subjects using simultaneous EEG/functional magnetic resonance imaging (fMRI). Voltages of 20 ms segments of the EEG root mean square (a global, largely reference-free measure of event-related EEG activity) in a time window 0-400 ms poststimulus were used to model trial-to-trial fluctuations in the fMRI blood oxygen level dependent (BOLD) signal. EEG-derived regressors explained additional variance in the BOLD signal from 140 ms poststimulus onward. According to this analysis, the contralateral parietal operculum was the first cortical area to become activated upon painful laser stimulation. The activation pattern in BOLD analyses informed by subsequent EEG-time windows suggests largely parallel signal processing in the bilateral operculo-insular and mid-cingulate cortices. In that regard, our data are in line with previous reports. However, the approach presented here is noninvasive and bypasses the inverse problem using only temporal information from the EEG.
先前使用脑电图 (EEG)、脑磁图 (MEG) 或颅内记录研究皮质疼痛处理的时空动力学,指出存在高度的并行性,例如初级和次级体感区域的并行而不是顺序激活,或者体感区域和中扣带皮层的同时激活。然而,由于逆问题,EEG 和 MEG 仅提供皮质疼痛诱导电磁活动发生器的有限空间分辨率和确定性,尤其是当多个源同时活跃时。另一方面,颅内记录是侵入性的,并且不能提供全脑覆盖。在这项研究中,我们考虑使用同时进行的 EEG/功能磁共振成像 (fMRI) 来研究 10 名健康受试者的皮质疼痛处理的时空动力学。在刺激后 0-400ms 的时间窗口中,使用 EEG 均方根 (一种与参考无关的事件相关 EEG 活动的全局测量) 的 20ms 段电压来对 fMRI 血氧水平依赖 (BOLD) 信号的试验间波动进行建模。EEG 衍生的回归器解释了刺激后 140ms 开始的 BOLD 信号的额外方差。根据该分析,对疼痛激光刺激,对侧顶叶脑岛盖是第一个被激活的皮质区域。随后的 EEG 时间窗提供的 BOLD 分析中的激活模式表明双侧脑岛盖和中扣带皮层的信号处理基本是并行的。在这方面,我们的数据与以前的报告一致。然而,这里提出的方法是非侵入性的,并且仅使用 EEG 的时间信息绕过逆问题。