Hirvonen Jonni, Palva Satu
Neuroscience Center, University of Helsinki, Finland.
BioMag Laboratory, HUS Medical Imaging Center, Finland.
Hum Brain Mapp. 2016 Jan;37(1):311-26. doi: 10.1002/hbm.23033. Epub 2015 Oct 20.
Neural dynamics leading to conscious sensory perception have remained enigmatic in despite of large interest. Human functional magnetic resonance imaging (fMRI) studies have revealed that a co-activation of sensory and frontoparietal areas is crucial for conscious sensory perception in the several second time-scale of BOLD signal fluctuations. Electrophysiological recordings with magneto- and electroencephalography (MEG and EEG) and intracranial EEG (iEEG) have shown that event related responses (ERs), phase-locking of neuronal activity, and oscillation amplitude modulations in sub-second timescales are greater for consciously perceived than for unperceived stimuli. The cortical sources of ER and oscillation dynamics predicting the conscious perception have, however, remained unclear because these prior studies have utilized MEG/EEG sensor-level analyses or iEEG with limited neuroanatomical coverage. We used a somatosensory detection task, magnetoencephalography (MEG), and cortically constrained source reconstruction to identify the cortical areas where ERs, local poststimulus amplitudes and phase-locking of neuronal activity are predictive of the conscious access of somatosensory information. We show here that strengthened ERs, phase-locking to stimulus onset (SL), and induced oscillations amplitude modulations all predicted conscious somatosensory perception, but the most robust and widespread of these was SL that was sustained in low-alpha (6-10 Hz) band. The strength of SL and to a lesser extent that of ER predicted conscious perception in the somatosensory, lateral and medial frontal, posterior parietal, and in the cingulate cortex. These data suggest that a rapid phase-reorganization and concurrent oscillation amplitude modulations in these areas play an instrumental role in the emergence of a conscious percept.
尽管备受关注,但导致有意识感觉知觉的神经动力学仍然是个谜。人类功能磁共振成像(fMRI)研究表明,在血氧水平依赖(BOLD)信号波动的数秒时间尺度上,感觉区域和额顶叶区域的共同激活对于有意识的感觉知觉至关重要。磁脑电图(MEG)和脑电图(EEG)以及颅内脑电图(iEEG)的电生理记录显示,在亚秒时间尺度上,与事件相关的反应(ERs)、神经元活动的锁相以及振荡幅度调制,对于有意识感知的刺激比未被感知的刺激更为强烈。然而,预测有意识感知的ER和振荡动力学的皮质来源仍不清楚,因为这些先前的研究使用了MEG/EEG传感器水平分析或神经解剖覆盖范围有限的iEEG。我们使用体感检测任务、磁脑电图(MEG)和皮质约束源重建来识别皮质区域,在这些区域中,ERs、局部刺激后幅度和神经元活动的锁相可预测体感信息的有意识获取。我们在此表明,增强的ERs、对刺激开始的锁相(SL)以及诱导的振荡幅度调制都可预测有意识的体感知觉,但其中最稳健且分布最广的是在低α(6 - 10 Hz)频段持续存在的SL。SL的强度以及在较小程度上ER的强度可预测体感、外侧和内侧额叶、顶叶后部以及扣带回皮质中的有意识感知。这些数据表明,这些区域中快速的相位重组和并发的振荡幅度调制在有意识知觉的出现中起着重要作用。