Suppr超能文献

猴尾状核的电微刺激抑制扫视。

Saccade suppression by electrical microstimulation in monkey caudate nucleus.

机构信息

Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada.

出版信息

J Neurosci. 2010 Feb 17;30(7):2700-9. doi: 10.1523/JNEUROSCI.5011-09.2010.

Abstract

It has been suggested that the caudate nucleus, the input stage of the basal ganglia, facilitates and suppresses saccade initiation based on its anatomical characteristics. Although the involvement of the caudate nucleus in saccade facilitation has been shown previously, it is still unclear whether the caudate nucleus is also involved in saccade suppression. Here, we revealed the direct involvement of the caudate nucleus in saccade suppression by electrical microstimulation in behaving monkeys. We delivered microstimulation to the caudate nucleus while monkeys performed the prosaccade (look toward a peripheral visual stimulus) and antisaccade (look away from the stimulus) paradigm. The reaction times of contralateral saccades were prolonged on both prosaccade and antisaccade trials. The suppression effects on reaction times were stronger on prosaccade trials compared with antisaccade trials. The analysis of reaction time distributions using the linear approach to threshold with ergodic rate model (LATER model) revealed that microstimulation prolonged reaction times by reducing the rate of rise to the threshold for saccade initiation. Microstimulation also worsened correct performance rates for contralateral saccades. The same microstimulation prolonged and/or shortened the reaction times of ipsilateral saccades, although the effects were not as consistent as those on contralateral saccades. We conclude that caudate signals are sufficient to suppress contralateral saccades and influence saccadic decision by controlling contralateral and ipsilateral saccade commands at the same time.

摘要

已有研究表明,基底神经节的输入阶段——尾状核,基于其解剖学特征促进和抑制眼跳的发起。尽管已有研究表明尾状核参与了眼跳的促进作用,但目前尚不清楚尾状核是否也参与了眼跳的抑制。在这里,我们通过对行为猴子进行电微刺激,揭示了尾状核直接参与眼跳抑制的现象。当猴子执行正眼跳(看向周边视觉刺激)和反眼跳(避开刺激)范式时,我们向尾状核施加微刺激。对侧眼跳的反应时间在正眼跳和反眼跳试验中均延长。与反眼跳试验相比,正眼跳试验中的抑制作用对反应时间的影响更强。使用具有遍历率模型的线性逼近阈值分析(LATER 模型)对反应时间分布的分析表明,微刺激通过降低眼跳发起的阈值上升率来延长反应时间。微刺激也降低了对侧眼跳的正确执行率。同样的微刺激延长和/或缩短了同侧眼跳的反应时间,尽管效果不如对侧眼跳那样一致。我们的结论是,尾状核信号足以抑制对侧眼跳,并通过同时控制对侧和同侧眼跳指令来影响眼跳决策。

相似文献

1
Saccade suppression by electrical microstimulation in monkey caudate nucleus.
J Neurosci. 2010 Feb 17;30(7):2700-9. doi: 10.1523/JNEUROSCI.5011-09.2010.
2
Saccade reaction times are influenced by caudate microstimulation following and prior to visual stimulus appearance.
J Cogn Neurosci. 2011 Jul;23(7):1794-807. doi: 10.1162/jocn.2010.21554. Epub 2010 Jul 28.
3
Effects of caudate microstimulation on spontaneous and purposive saccades.
J Neurophysiol. 2013 Jul;110(2):334-43. doi: 10.1152/jn.00046.2013. Epub 2013 May 1.
4
Effects of anterior cingulate microstimulation on pro- and antisaccades in nonhuman primates.
J Cogn Neurosci. 2011 Feb;23(2):481-90. doi: 10.1162/jocn.2010.21482. Epub 2010 Mar 29.
5
Microstimulation of monkey dorsolateral prefrontal cortex impairs antisaccade performance.
Exp Brain Res. 2008 Oct;190(4):463-73. doi: 10.1007/s00221-008-1488-4. Epub 2008 Jul 19.
6
Neural correlates of conflict resolution between automatic and volitional actions by basal ganglia.
Eur J Neurosci. 2009 Dec 3;30(11):2165-76. doi: 10.1111/j.1460-9568.2009.06998.x. Epub 2009 Nov 25.
7
Suppression of task-related saccades by electrical stimulation in the primate's frontal eye field.
J Neurophysiol. 1997 May;77(5):2252-67. doi: 10.1152/jn.1997.77.5.2252.
8
9
Electrical microstimulation of primate posterior parietal cortex initiates orienting and alerting components of covert attention.
Exp Brain Res. 2002 May;144(1):103-13. doi: 10.1007/s00221-002-1032-x. Epub 2002 Mar 2.
10
Presetting basal ganglia for volitional actions.
J Neurosci. 2010 Jul 28;30(30):10144-57. doi: 10.1523/JNEUROSCI.1738-10.2010.

引用本文的文献

1
Neural Mechanisms Underlying Robust Target Selection in Response to Microstimulation of the Oculomotor System.
J Neurosci. 2025 Jan 15;45(3):e2356232024. doi: 10.1523/JNEUROSCI.2356-23.2024.
3
Altered effective connectivity within an oculomotor control network in individuals with schizophrenia.
Neuroimage Clin. 2021;31:102764. doi: 10.1016/j.nicl.2021.102764. Epub 2021 Jul 14.
4
Control of response interference: caudate nucleus contributes to selective inhibition.
Sci Rep. 2020 Dec 1;10(1):20977. doi: 10.1038/s41598-020-77744-1.
6
[Temporary acceleration of interstitial fluid drainage in excited brain region induced by movement].
Beijing Da Xue Xue Bao Yi Xue Ban. 2019 Apr 18;51(2):206-209. doi: 10.19723/j.issn.1671-167X.2019.02.002.
7
Covert spatial selection in primate basal ganglia.
PLoS Biol. 2018 Oct 26;16(10):e2005930. doi: 10.1371/journal.pbio.2005930. eCollection 2018 Oct.
8
Striatal Microstimulation Induces Persistent and Repetitive Negative Decision-Making Predicted by Striatal Beta-Band Oscillation.
Neuron. 2018 Aug 22;99(4):829-841.e6. doi: 10.1016/j.neuron.2018.07.022. Epub 2018 Aug 9.
9
Electrical Microstimulation of the Pulvinar Biases Saccade Choices and Reaction Times in a Time-Dependent Manner.
J Neurosci. 2017 Feb 22;37(8):2234-2257. doi: 10.1523/JNEUROSCI.1984-16.2016. Epub 2017 Jan 24.
10
Differential neural mechanisms for early and late prediction error detection.
Sci Rep. 2016 Apr 15;6:24350. doi: 10.1038/srep24350.

本文引用的文献

1
Neural correlates of conflict resolution between automatic and volitional actions by basal ganglia.
Eur J Neurosci. 2009 Dec 3;30(11):2165-76. doi: 10.1111/j.1460-9568.2009.06998.x. Epub 2009 Nov 25.
2
Neural activity in primate caudate nucleus associated with pro- and antisaccades.
J Neurophysiol. 2009 Oct;102(4):2334-41. doi: 10.1152/jn.00125.2009. Epub 2009 Aug 19.
3
Spatial relationships of visuomotor transformations in the superior colliculus map.
J Neurophysiol. 2008 Nov;100(5):2564-76. doi: 10.1152/jn.90688.2008. Epub 2008 Aug 27.
4
Role for subthalamic nucleus neurons in switching from automatic to controlled eye movement.
J Neurosci. 2008 Jul 9;28(28):7209-18. doi: 10.1523/JNEUROSCI.0487-08.2008.
5
Enhanced modulation of neuronal activity during antisaccades in the primate globus pallidus.
Cereb Cortex. 2009 Jan;19(1):206-17. doi: 10.1093/cercor/bhn069. Epub 2008 May 13.
6
Saccadic impairments in Huntington's disease.
Exp Brain Res. 2008 Apr;186(3):457-69. doi: 10.1007/s00221-007-1248-x. Epub 2008 Jan 10.
7
A practical solution to the pervasive problems of p values.
Psychon Bull Rev. 2007 Oct;14(5):779-804. doi: 10.3758/bf03194105.
8
Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism.
Science. 2007 Nov 23;318(5854):1309-12. doi: 10.1126/science.1146157. Epub 2007 Oct 25.
9
10
Internet-enabled high-resolution brain mapping and virtual microscopy.
Neuroimage. 2007 Mar;35(1):9-15. doi: 10.1016/j.neuroimage.2006.11.053. Epub 2007 Jan 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验