Suppr超能文献

相似文献

1
Balanced excitation and inhibition are required for high-capacity, noise-robust neuronal selectivity.
Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):E9366-E9375. doi: 10.1073/pnas.1705841114. Epub 2017 Oct 17.
2
A balanced memory network.
PLoS Comput Biol. 2007 Sep;3(9):1679-700. doi: 10.1371/journal.pcbi.0030141. Epub 2007 Jun 5.
3
Robust Associative Learning Is Sufficient to Explain the Structural and Dynamical Properties of Local Cortical Circuits.
J Neurosci. 2019 Aug 28;39(35):6888-6904. doi: 10.1523/JNEUROSCI.3218-18.2019. Epub 2019 Jul 3.
4
When response variability increases neural network robustness to synaptic noise.
Neural Comput. 2006 Jun;18(6):1349-79. doi: 10.1162/neco.2006.18.6.1349.
5
Fast Learning with Weak Synaptic Plasticity.
J Neurosci. 2015 Sep 30;35(39):13351-62. doi: 10.1523/JNEUROSCI.0607-15.2015.
6
Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks.
Science. 2011 Dec 16;334(6062):1569-73. doi: 10.1126/science.1211095. Epub 2011 Nov 10.
7
Transition from Asynchronous to Oscillatory Dynamics in Balanced Spiking Networks with Instantaneous Synapses.
Phys Rev Lett. 2018 Sep 21;121(12):128301. doi: 10.1103/PhysRevLett.121.128301.
8
Learning of oscillatory correlated patterns in a cortical network by a STDP-based learning rule.
Math Biosci. 2007 Jun;207(2):322-35. doi: 10.1016/j.mbs.2006.10.001. Epub 2006 Oct 19.
9
Neuronal bases of perceptual learning revealed by a synaptic balance scheme.
Neural Comput. 2004 Mar;16(3):563-94. doi: 10.1162/089976604772744910.
10
Learning only when necessary: better memories of correlated patterns in networks with bounded synapses.
Neural Comput. 2005 Oct;17(10):2106-38. doi: 10.1162/0899766054615644.

引用本文的文献

5
Level of M1 GABAB predicts micro offline consolidation of motor learning during wakefulness.
NPJ Sci Learn. 2025 Feb 23;10(1):10. doi: 10.1038/s41539-025-00299-1.
7
Rhythmic circuit function is more robust to changes in synaptic than intrinsic conductances.
bioRxiv. 2025 Feb 5:2024.09.03.611139. doi: 10.1101/2024.09.03.611139.
8
Sub-threshold neuronal activity and the dynamical regime of cerebral cortex.
Nat Commun. 2024 Sep 11;15(1):7958. doi: 10.1038/s41467-024-51390-x.
9
Inhibitory plasticity supports replay generalization in the hippocampus.
Nat Neurosci. 2024 Oct;27(10):1987-1998. doi: 10.1038/s41593-024-01745-w. Epub 2024 Sep 3.

本文引用的文献

1
Inhibitory Plasticity: Balance, Control, and Codependence.
Annu Rev Neurosci. 2017 Jul 25;40:557-579. doi: 10.1146/annurev-neuro-072116-031005. Epub 2017 Jun 9.
2
Optimal Degrees of Synaptic Connectivity.
Neuron. 2017 Mar 8;93(5):1153-1164.e7. doi: 10.1016/j.neuron.2017.01.030. Epub 2017 Feb 16.
3
Encoding in Balanced Networks: Revisiting Spike Patterns and Chaos in Stimulus-Driven Systems.
PLoS Comput Biol. 2016 Dec 14;12(12):e1005258. doi: 10.1371/journal.pcbi.1005258. eCollection 2016 Dec.
4
Is cortical connectivity optimized for storing information?
Nat Neurosci. 2016 May;19(5):749-755. doi: 10.1038/nn.4286. Epub 2016 Apr 11.
5
Spiking neurons can discover predictive features by aggregate-label learning.
Science. 2016 Mar 4;351(6277):aab4113. doi: 10.1126/science.aab4113.
6
Efficient codes and balanced networks.
Nat Neurosci. 2016 Mar;19(3):375-82. doi: 10.1038/nn.4243.
7
Synapse-type-specific plasticity in local circuits.
Curr Opin Neurobiol. 2015 Dec;35:127-35. doi: 10.1016/j.conb.2015.08.001. Epub 2015 Aug 25.
8
Asynchronous Rate Chaos in Spiking Neuronal Circuits.
PLoS Comput Biol. 2015 Jul 31;11(7):e1004266. doi: 10.1371/journal.pcbi.1004266. eCollection 2015 Jul.
9
Deep learning.
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
10
Inhibitory and excitatory spike-timing-dependent plasticity in the auditory cortex.
Neuron. 2015 Apr 22;86(2):514-28. doi: 10.1016/j.neuron.2015.03.014. Epub 2015 Apr 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验