Department of Neuroscience, Columbia University, New York, NY 10027;
Department of Neuroscience, Columbia University, New York, NY 10027.
Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):E9366-E9375. doi: 10.1073/pnas.1705841114. Epub 2017 Oct 17.
Neurons and networks in the cerebral cortex must operate reliably despite multiple sources of noise. To evaluate the impact of both input and output noise, we determine the robustness of single-neuron stimulus selective responses, as well as the robustness of attractor states of networks of neurons performing memory tasks. We find that robustness to output noise requires synaptic connections to be in a balanced regime in which excitation and inhibition are strong and largely cancel each other. We evaluate the conditions required for this regime to exist and determine the properties of networks operating within it. A plausible synaptic plasticity rule for learning that balances weight configurations is presented. Our theory predicts an optimal ratio of the number of excitatory and inhibitory synapses for maximizing the encoding capacity of balanced networks for given statistics of afferent activations. Previous work has shown that balanced networks amplify spatiotemporal variability and account for observed asynchronous irregular states. Here we present a distinct type of balanced network that amplifies small changes in the impinging signals and emerges automatically from learning to perform neuronal and network functions robustly.
大脑皮层中的神经元和神经网络必须在存在多种噪声源的情况下可靠地运作。为了评估输入和输出噪声的影响,我们确定了执行记忆任务的神经元网络的单个神经元刺激选择性反应的稳健性,以及吸引子状态的稳健性。我们发现,要使输出噪声具有鲁棒性,就需要突触连接处于平衡状态,在这种状态下,兴奋和抑制都很强,并且在很大程度上相互抵消。我们评估了存在这种状态的条件,并确定了在其中运行的网络的特性。提出了一种用于学习的平衡权重配置的合理的突触可塑性规则。我们的理论预测了对于给定传入激活统计量,最大化平衡网络的编码能力所需的最佳兴奋性和抑制性突触数量的比值。先前的工作表明,平衡网络放大了时空变异性,并解释了观察到的异步不规则状态。在这里,我们提出了一种不同类型的平衡网络,它可以放大传入信号中的微小变化,并自动从学习中出现,从而稳健地执行神经元和网络功能。