Van Schepdael A, Busson R, Vanderhaeghe H J, Claes P J, Verbist L, Mingeot-Leclercq M P, Brasseur R, Tulkens P M
Laboratorium voor Farmaceutische Chemie, Rega Institut, Katholieke Universiteit Leuven, Belgium.
J Med Chem. 1991 Apr;34(4):1483-92. doi: 10.1021/jm00108a037.
Substitution of the C-1 atom in the 2-deoxystreptamine moiety of gentamicin C2, a broad-spectrum aminoglycoside antibiotic, by an axial hydroxymethyl group has been reported to confer protection against most clinically important bacterial enzymes inactivating aminoglycosides, while simultaneously reducing the nephrotoxic potential of this drug. We report here on a similar modification of kanamycin B. Microbiological evaluation, however, revealed no useful protection, as established by the almost complete lack of activity of 1-C-(hydroxymethyl)kanamycin B against an array of organisms producing defined types of aminoglycoside-inactivating enzymes and against which 1-C-(hydroxymethyl)gentamicin C2 and amikacin (1-N-[(S)-2-hydroxy-4-aminobutyryl]kanamycin A) are active. Moreover, toxicological evaluation, based on the in vitro measurement of the drug inhibitory potential toward lysosomal phospholipases, a predictive test of the intrinsic nephrotoxic potential of aminoglycosides, showed not decreased but rather increased toxicity. Comparative conformational analysis of the interactions of the drug with a phosphatidylinositol monolayer explained the lack of protective effect, since no significant change of the mode of insertion of the derivative in this monolayer was detected compared to that of kanamycin B. Combination of a 1-C-(hydroxymethyl) substituent with a 6"-chloro, 6"-acetamido substituent resulted in a partial improvement of the toxicological behavior with no loss of activity for the 6"-chloro and the 6"-azido derivatives, but not to the extent of obtaining better derivatives than kanamycin B itself. We, therefore, suggest that the advantages of an axial hydroxymethyl substituent at C-1 are probably restricted to the gentamicin family and do not extend to kanamycins. It might be concluded that the structural differences between gentamicins and kanamycins play an important, still undescribed role both in their effective recognition by aminoglycoside-inactivating enzymes, which are responsible for most of the clinically important cases of resistance to aminoglycosides, and also in the interactions with phospholipids, which in turn cause nephrotoxicity.
据报道,在广谱氨基糖苷类抗生素庆大霉素C2的2-脱氧链霉胺部分的C-1原子上用一个轴向羟甲基取代,可使该药物对大多数临床上重要的使氨基糖苷类失活的细菌酶产生抗性,同时降低该药物的肾毒性潜力。我们在此报告卡那霉素B的类似修饰。然而,微生物学评估显示没有有效的保护作用,这是由1-C-(羟甲基)卡那霉素B对一系列产生特定类型氨基糖苷类失活酶的生物体几乎完全缺乏活性所确定的,而1-C-(羟甲基)庆大霉素C2和阿米卡星(1-N-[(S)-2-羟基-4-氨基丁酰基]卡那霉素A)对这些生物体是有活性的。此外,基于体外测量药物对溶酶体磷脂酶的抑制潜力的毒理学评估,这是氨基糖苷类药物内在肾毒性潜力的预测性测试,结果显示毒性没有降低反而增加。对该药物与磷脂酰肌醇单层相互作用的比较构象分析解释了缺乏保护作用的原因,因为与卡那霉素B相比,未检测到该衍生物在该单层中的插入模式有显著变化。将1-C-(羟甲基)取代基与6''-氯、6''-乙酰氨基取代基结合,在毒理学行为上有部分改善,6''-氯和6''-叠氮基衍生物没有活性损失,但没有达到获得比卡那霉素B本身更好的衍生物的程度。因此,我们认为C-1位轴向羟甲基取代基的优势可能仅限于庆大霉素家族,并不适用于卡那霉素。可以得出结论,庆大霉素和卡那霉素之间的结构差异在它们被氨基糖苷类失活酶有效识别(这是导致临床上大多数重要的氨基糖苷类耐药病例的原因)以及与磷脂的相互作用(这反过来又会导致肾毒性)中都起着重要的、尚未描述的作用。