Martin Vincent, Kerhervé Hugo, Messonnier Laurent A, Banfi Jean-Claude, Geyssant André, Bonnefoy Regis, Féasson Léonard, Millet Guillaume Y
Institut National de la Santé et de la Recherche Médicale Unité 902, University of Evry Val d'Essonne, Evry, France.
J Appl Physiol (1985). 2010 May;108(5):1224-33. doi: 10.1152/japplphysiol.01202.2009. Epub 2010 Feb 18.
This experiment investigated the fatigue induced by a 24-h running exercise (24TR) and particularly aimed at testing the hypothesis that the central component would be the main mechanism responsible for neuromuscular fatigue. Neuromuscular function evaluation was performed before, every 4 h during, and at the end of the 24TR on 12 experienced ultramarathon runners. It consisted of a determination of the maximal voluntary contractions (MVC) of the knee extensors (KE) and plantar flexors (PF), the maximal voluntary activation (%VA) of the KE and PF, and the maximal compound muscle action potential amplitude (Mmax) on the soleus and vastus lateralis. Tetanic stimulations also were delivered to evaluate the presence of low-frequency fatigue and the KE maximal muscle force production ability. Strength loss occurred throughout the exercise, with large changes observed after 24TR in MVC for both the KE and PF muscles (-40.9+/-17.0 and -30.3+/-12.5%, respectively; P<0.001) together with marked reductions of %VA (-33.0+/-21.8 and -14.8+/-18.9%, respectively; P<0.001). A reduction of Mmax amplitude was observed only on soleus, and no low-frequency fatigue was observed for any muscle group. Finally, KE maximal force production ability was reduced to a moderate extent at the end of the 24TR (-10.2%; P<0.001), but these alterations were highly variable (+/-15.7%). These results suggest that central factors are mainly responsible for the large maximal muscle torque reduction after ultraendurance running, especially on the KE muscles. Neural drive reduction may have contributed to the relative preservation of peripheral function and also affected the evolution of the running speed during the 24TR.
本实验研究了24小时持续跑步运动(24TR)诱发的疲劳,特别旨在验证如下假设:中枢因素是导致神经肌肉疲劳的主要机制。对12名经验丰富的超级马拉松运动员在24TR运动前、运动期间每4小时以及运动结束时进行神经肌肉功能评估。评估内容包括测定膝关节伸肌(KE)和跖屈肌(PF)的最大自主收缩(MVC)、KE和PF的最大自主激活(%VA),以及比目鱼肌和股外侧肌的最大复合肌肉动作电位幅度(Mmax)。还进行强直刺激以评估低频疲劳的存在以及KE的最大肌肉力量产生能力。在整个运动过程中均出现力量下降,24TR运动后KE和PF肌肉的MVC均出现大幅变化(分别为-40.9±17.0和-30.3±12.5%;P<0.001),同时%VA显著降低(分别为-33.0±21.8和-14.8±18.9%;P<0.001)。仅在比目鱼肌上观察到Mmax幅度降低,且未在任何肌肉群中观察到低频疲劳。最后,在24TR运动结束时KE的最大力量产生能力有一定程度的降低(-10.2%;P<0.001),但这些变化的个体差异很大(±15.7%)。这些结果表明,中枢因素是导致超长耐力跑步后最大肌肉扭矩大幅降低的主要原因,尤其是对KE肌肉而言。神经驱动的降低可能有助于外周功能的相对保留,并且也影响了24TR运动期间跑步速度的变化。