Department of Health Science and Technology, Aalborg University, Gistrup, Denmark.
Department of Materials and Production, Aalborg University, Fibigerstræde 16, Building 4, 9220, Aalborg Øst, Denmark.
Eur J Appl Physiol. 2024 Mar;124(3):963-973. doi: 10.1007/s00421-023-05322-0. Epub 2023 Sep 29.
The rate of perceived effort (RPE) is a subjective scale widely used for defining training loads. However, the subjective nature of the metric might lead to an inaccurate representation of the imposed metabolic/mechanical exercise demands. Therefore, this study aimed to predict the rate of perceived exertions during running using biomechanical parameters extracted from a commercially available running smartwatch. Forty-three recreational runners performed a simulated 5-km race on a track, providing their RPE from a Borg scale (6-20) every 400 m. Running distance, heart rate, foot contact time, cadence, stride length, and vertical oscillation were extracted from a running smartwatch (Garmin 735XT). Machine learning regression models were trained to predict the RPE at every 5 s of the 5-km race using subject-independent (leave-one-out), as well as a subject-dependent regression method. The subject-dependent method was tested using 5%, 10%, or 20% of the runner's data in the training set while using the remaining data for testing. The average root-mean-square error (RMSE) in predicting the RPE using the subject-independent method was 1.8 ± 0.8 RPE points (range 0.6-4.1; relative RMSE ~ 12 ± 6%) across the entire 5-km race. However, the error from subject-dependent models was reduced to 1.00 ± 0.31, 0.66 ± 0.20 and 0.45 ± 0.13 RPE points when using 5%, 10%, and 20% of data for training, respectively (average relative RMSE < 7%). All types of predictions underestimated the maximal RPE in ~ 1 RPE point. These results suggest that the data accessible from commercial smartwatches can be used to predict perceived exertion, opening new venues to improve training workload monitoring.
运动感知用力率(RPE)是一种广泛用于定义训练负荷的主观量表。然而,由于该指标的主观性,可能会导致对所施加的代谢/力学运动需求的不准确表示。因此,本研究旨在使用从市售跑步智能手表提取的生物力学参数来预测跑步时的 RPE。43 名休闲跑者在跑道上进行了模拟的 5 公里比赛,每 400 米使用 Borg 量表(6-20)提供他们的 RPE。从跑步智能手表(Garmin 735XT)中提取跑步距离、心率、触地时间、步频、步长和垂直摆动。使用独立于受试者的(留一法)和依赖于受试者的回归方法,训练机器学习回归模型来预测 5 公里比赛中每 5 秒的 RPE。使用受试者数据的 5%、10%或 20%进行训练,而将其余数据用于测试,测试依赖于受试者的方法。使用独立于受试者的方法预测 RPE 的平均均方根误差(RMSE)在整个 5 公里比赛中为 1.8±0.8 RPE 点(范围 0.6-4.1;相对 RMSE~12±6%)。然而,当使用 5%、10%和 20%的数据进行训练时,依赖于受试者的模型的误差分别减少到 1.00±0.31、0.66±0.20 和 0.45±0.13 RPE 点(平均相对 RMSE<7%)。所有类型的预测都低估了最大 RPE 约 1 RPE 点。这些结果表明,从市售智能手表获取的数据可用于预测感知用力,为改善训练负荷监测开辟了新途径。