Institute of Physiology, Charité-Universitätsmedizin Berlin, Germany.
Circ Res. 2010 Apr 2;106(6):1103-16. doi: 10.1161/CIRCRESAHA.109.210542. Epub 2010 Feb 18.
Congestive heart failure (CHF) frequently results in remodeling and increased tone of pulmonary resistance vessels. This adaptive response, which aggravates pulmonary hypertension and thus, promotes right ventricular failure, has been attributed to lung endothelial dysfunction.
We applied real-time fluorescence imaging to identify endothelial dysfunction and underlying molecular mechanisms in an experimental model of CHF induced by supracoronary aortic banding in rats.
Endothelial dysfunction was evident in lungs of CHF rats as impaired endothelium-dependent vasodilation and lack of endothelial NO synthesis in response to mechanical stress, acetylcholine, or histamine. This effect was not attributable to downregulation of endothelial NO synthase. Imaging of the cytosolic Ca(2+) concentration (Ca(2+)) revealed a singular impairment of endothelial Ca(2+) homeostasis and signaling characterized by a lack of Ca(2+) oscillations and deficient or attenuated Ca(2+) responses to mechanical stress, histamine, acetylcholine, or thapsigargin. Reconstitution of a Ca(2+) signal by ionophore treatment restored endothelial NO production, but lack of endothelial responsiveness was not primarily attributable to downregulation of Ca(2+) influx channels in CHF. Rather, we identified a massive remodeling of the endothelial cytoskeleton in the form of an increased expression of beta-actin and F-actin formation which contributed critically to endothelial dysfunction in CHF because cytoskeletal disruption by cytochalasin D largely reconstituted endothelial Ca(2+) signaling and NO production.
Our findings characterize a unique scenario of endothelial dysfunction in CHF that is caused by a singular impairment of Ca(2+) signaling, and identify cytoskeletal reorganization as a major regulator of endothelial signaling and function.
充血性心力衰竭(CHF)常导致肺阻力血管重塑和张力增加。这种适应性反应使肺动脉高压恶化,从而促进右心衰竭,其原因与肺内皮功能障碍有关。
我们应用实时荧光成像技术,在大鼠升主动脉上方缩窄诱导 CHF 的实验模型中,确定内皮功能障碍及其潜在的分子机制。
CHF 大鼠的肺内皮功能障碍表现为机械应激、乙酰胆碱或组胺刺激时,内皮依赖性血管舒张受损,内皮一氧化氮(NO)合成减少。这种作用不能归因于内皮型一氧化氮合酶(eNOS)下调。细胞内 Ca2+浓度 ([Ca2+]i) 的成像显示,内皮 [Ca2+]i 稳态和信号传导存在单一缺陷,其特征为缺乏 [Ca2+]i 振荡,以及对机械应激、组胺、乙酰胆碱或 thapsigargin 的 [Ca2+]i 反应不足或减弱。离子载体处理重建 [Ca2+]i 信号可恢复内皮 NO 生成,但内皮反应性下降并非主要归因于 CHF 中 Ca2+ 流入通道下调。相反,我们发现内皮细胞骨架发生了大量重塑,表现为β-肌动蛋白表达增加和 F-肌动蛋白形成,这在 CHF 中的内皮功能障碍中起着关键作用,因为细胞松弛素 D 破坏细胞骨架可在很大程度上重建内皮 [Ca2+]i 信号和 NO 生成。
我们的研究结果描述了 CHF 中内皮功能障碍的一种独特情况,其原因是 [Ca2+]i 信号的单一损伤,并确定细胞骨架重排是内皮信号和功能的主要调节因子。