Suppr超能文献

分子机器理论。II. 分子机器的能量耗散

Theory of molecular machines. II. Energy dissipation from molecular machines.

作者信息

Schneider T D

机构信息

Frederick Cancer Research and Development Center, Laboratory of Mathematical Biology, MD 21702.

出版信息

J Theor Biol. 1991 Jan 7;148(1):125-37. doi: 10.1016/s0022-5193(05)80467-9.

Abstract

Single molecules perform a variety of tasks in cells, from replicating, controlling and translating the genetic material to sensing the outside environment. These operations all require that specific actions take place. In a sense, each molecule must make tiny decisions. To make a decision, each "molecular machine" must dissipate an energy Py in the presence of thermal noise Ny. The number of binary decisions that can be made by a machine which has dspace independently moving parts is the "machine capacity" Cy = dspace log2 [(Py + Ny)/Ny]. This formula is closely related to Shannon's channel capacity for communications systems, C = W log2 [(P + N)/N]. This paper shows that the minimum amount of energy that a molecular machine must dissipate in order to gain one bit of information is epsilon min = kB T ln (2) joules/bit. This equation is derived in two distinct ways. The first derivation begins with the Second Law of Thermodynamics, which shows that the statement that there is a minimum energy dissipation is a restatement of the Second Law of Thermodynamics. The second derivation begins with the machine capacity formula, which shows that the machine capacity is also related to the Second Law of Thermodynamics. One of Shannon's theorems for communications channels is that as long as the channel capacity is not exceeded, the error rate may be made as small as desired by a sufficiently involved coding. This result also applies to the dissipation formula for molecular machines. So there is a precise upper bound on the number of choices a molecular machine can make for a given amount of energy loss. This result will be important for the design and construction of molecular computers.

摘要

单分子在细胞中执行各种任务,从复制、控制和翻译遗传物质到感知外部环境。这些操作都需要特定的行动发生。从某种意义上说,每个分子都必须做出微小的决策。为了做出决策,每个“分子机器”在存在热噪声Ny的情况下必须耗散能量Py。具有dspace个独立运动部件的机器能够做出的二元决策数量就是“机器容量”Cy = dspace log2[(Py + Ny)/Ny]。这个公式与通信系统中香农的信道容量C = W log2[(P + N)/N]密切相关。本文表明,分子机器为了获得一位信息必须耗散的最小能量为εmin = kB T ln(2)焦耳/比特。这个等式通过两种不同的方式推导得出。第一种推导从热力学第二定律开始,这表明存在最小能量耗散这一说法是热力学第二定律的一种重新表述。第二种推导从机器容量公式开始,这表明机器容量也与热力学第二定律相关。香农关于通信信道的一个定理是,只要不超过信道容量,通过足够复杂的编码,错误率可以小到任意程度。这个结果也适用于分子机器的耗散公式。所以对于给定的能量损失,分子机器能够做出的选择数量存在一个精确的上限。这个结果对于分子计算机的设计和构建将具有重要意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验