Hess H, Ross Jennifer L
Department of Biomedical Engineering, Columbia University, USA.
Chem Soc Rev. 2017 Sep 18;46(18):5570-5587. doi: 10.1039/c7cs00030h.
Biological systems have evolved to harness non-equilibrium processes from the molecular to the macro scale. It is currently a grand challenge of chemistry, materials science, and engineering to understand and mimic biological systems that have the ability to autonomously sense stimuli, process these inputs, and respond by performing mechanical work. New chemical systems are responding to the challenge and form the basis for future responsive, adaptive, and active materials. In this article, we describe a particular biochemical-biomechanical network based on the microtubule cytoskeletal filament - itself a non-equilibrium chemical system. We trace the non-equilibrium aspects of the system from molecules to networks and describe how the cell uses this system to perform active work in essential processes. Finally, we discuss how microtubule-based engineered systems can serve as testbeds for autonomous chemical robots composed of biological and synthetic components.
生物系统已经进化到能够利用从分子尺度到宏观尺度的非平衡过程。理解并模仿那些能够自主感知刺激、处理这些输入并通过执行机械功做出响应的生物系统,目前是化学、材料科学和工程领域的一项重大挑战。新的化学系统正在应对这一挑战,并为未来的响应性、适应性和活性材料奠定基础。在本文中,我们描述了一个基于微管细胞骨架细丝的特定生化-生物力学网络——其本身就是一个非平衡化学系统。我们追踪了该系统从分子到网络的非平衡特性,并描述了细胞如何利用这个系统在基本过程中执行主动功。最后,我们讨论了基于微管的工程系统如何能够作为由生物和合成组件组成的自主化学机器人的试验台。