Suppr超能文献

用于改善呼吸阻抗测量中信噪比的时域数字滤波器。

Time-domain digital filter to improve signal-to-noise ratio in respiratory impedance measurements.

作者信息

Farré R, Rotger M, Navajas D

机构信息

Lab. Biofisica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Spain.

出版信息

Med Biol Eng Comput. 1991 Jan;29(1):18-24. doi: 10.1007/BF02446291.

Abstract

The mechanical impedance of the respiratory system Zrs is usually measured by forced excitation while the patient breathes spontaneously. Pressure and flow signals due to breathing contaminate the excitation signals, leading to a poor signal-to-noise ratio (SNR) and thus to errors in impedance estimation, especially at low frequencies (up to 8 Hz). To enhance SNR in the recorded signals we designed an infinite impulse response digital filter for the frequent case in which the excitation is pseudorandom. The algorithm is based on narrowband second-order bandpass elements centred at the excitation frequencies. The performance of the filter was assessed in a simulation study by superposing forced excitation signals (2-32 Hz) from a reference model and the signals of breathing recorded from 16 subjects. When compared with a conventional high-pass filtering, the devised filtering resulted in an increase in SNR which was almost constant over the whole frequency band: 6.30 +/- 0.98 dB (mean +/- SD). This improvement in SNR was reflected in an increase in the number of subjects for which the corresponding coherence y2 attained a value greater than the conventional threshold of acceptability (y2 = 0.95). At the lowest frequency (2 Hz) only two (12.5 per cent) simulated subjects had y2 greater than or equal to 0.95 with the conventional high-pass filtering. By contrast, when using the devised comb filter the number of subjects with y2 greater than or equal to 0.95 increased up to 13 (81 per cent). The results obtained suggest that this filter may be useful to improve SNR and thus Zrs estimation.

摘要

呼吸系统的机械阻抗Zrs通常在患者自主呼吸时通过强制激励来测量。呼吸产生的压力和流量信号会干扰激励信号,导致信噪比(SNR)较差,进而导致阻抗估计出现误差,尤其是在低频(高达8 Hz)时。为了提高记录信号中的SNR,我们针对激励为伪随机的常见情况设计了一种无限脉冲响应数字滤波器。该算法基于以激励频率为中心的窄带二阶带通元件。通过将参考模型的强制激励信号(2 - 32 Hz)与16名受试者记录的呼吸信号叠加,在模拟研究中评估了滤波器的性能。与传统的高通滤波相比,所设计的滤波在整个频带内使SNR增加,且几乎保持恒定:6.30 +/- 0.98 dB(均值 +/- 标准差)。SNR的这种提高反映在相应相干性y2大于传统可接受阈值(y2 = 0.95)的受试者数量增加上。在最低频率(2 Hz)时,使用传统高通滤波时,只有两名(12.5%)模拟受试者的y2大于或等于0.95。相比之下,使用所设计的梳状滤波器时,y2大于或等于0.95的受试者数量增加到13名(81%)。所得结果表明,该滤波器可能有助于提高SNR,从而有助于Zrs估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验