Suppr超能文献

用于数字生成随机噪声的呼吸阻抗谱估计。

Respiratory impedance spectral estimation for digitally created random noise.

作者信息

Davis K A, Lutchen K R

机构信息

Department of Biomedical Engineering, Boston University, MA 02115.

出版信息

Ann Biomed Eng. 1991;19(2):179-95. doi: 10.1007/BF02368468.

Abstract

Measurement of respiratory input mechanical impedance (Zrs) is noninvasive, requires minimal subject cooperation, and contains information related to mechanical lung function. A common approach to measure Zrs is to apply random noise pressure signals at the airway opening, measure the resulting flow variations, and then estimate Zrs using Fast-Fourier Transform (FFT) techniques. The goal of this study was to quantify how several signal processing issues affect the quality of a Zrs spectral estimate when the input pressure sequence is created digitally. Random noise driven pressure and flow time domain data were simulated for three models, which permitted predictions of Zrs characteristics previously reported from 0-4, 4-32, and 4-200 Hz. Then, the quality of the Zrs estimate was evaluated as a function of the number of runs ensemble averaged, windowing, flow signal-to-noise ratio (SNR), and pressure spectral magnitude shape magnitude of P(j omega). For a magnitude of P(j omega) with uniform power distribution and a SNR less than 100, the 0-4 Hz and 4-200 Hz Zrs estimates for 10 runs were poor (minimum coherence gamma 2 less than 0.75) particularly where Zrs is high. When the SNR greater than 200 and 10 runs were averaged, the minimum gamma 2 greater than 0.95. However, when magnitude of P(j omega) was matched to magnitude of Zrs, gamma 2 greater than 0.91 even for 5 runs and a SNR of 20. For data created digitally with equally spaced spectral content, the rectangular window was superior to the Hanning. Finally, coherence alone may not be a reliable measure of Zrs quality because coherence is only an estimate itself. We conclude that an accurate estimate of Zrs is best obtained by matching magnitude of P(j omega) to magnitude of Zin (subject and speaker) and using rectangular windowing.

摘要

呼吸输入机械阻抗(Zrs)的测量是非侵入性的,所需受试者配合极少,且包含与肺机械功能相关的信息。测量Zrs的一种常用方法是在气道开口处施加随机噪声压力信号,测量由此产生的流量变化,然后使用快速傅里叶变换(FFT)技术估算Zrs。本研究的目的是量化当数字生成输入压力序列时,几个信号处理问题如何影响Zrs频谱估计的质量。针对三种模型模拟了随机噪声驱动的压力和流量时域数据,这使得能够预测先前报道的0 - 4Hz、4 - 32Hz和4 - 200Hz的Zrs特征。然后,根据平均的运行次数、加窗、流量信噪比(SNR)以及P(jω)的压力谱幅值形状幅值来评估Zrs估计的质量。对于具有均匀功率分布且SNR小于100的P(jω)幅值,10次运行的0 - 4Hz和4 - 200Hz的Zrs估计很差(最小相干度γ²小于0.75),特别是在Zrs较高的地方。当SNR大于200且平均10次运行时,最小γ²大于0.95。然而,当P(jω)的幅值与Zrs的幅值匹配时,即使5次运行且SNR为20,γ²也大于0.91。对于具有等间距频谱内容的数字生成数据,矩形窗优于汉宁窗。最后,仅相干度可能不是Zrs质量的可靠度量,因为相干度本身只是一个估计值。我们得出结论,通过使P(jω)的幅值与Zin(受试者和扬声器)的幅值匹配并使用矩形加窗,可以最好地获得Zrs的准确估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验