Suppr超能文献

恩替卡韦耐药乙型肝炎病毒聚合酶的作用机制表征和分子建模。

Mechanistic characterization and molecular modeling of hepatitis B virus polymerase resistance to entecavir.

机构信息

Research and Development, Bristol-Myers Squibb Inc., Wallingford, Connecticut, United States of America.

出版信息

PLoS One. 2010 Feb 12;5(2):e9195. doi: 10.1371/journal.pone.0009195.

Abstract

BACKGROUND

Entecavir (ETV) is a deoxyguanosine analog competitive inhibitor of hepatitis B virus (HBV) polymerase that exhibits delayed chain termination of HBV DNA. A high barrier to entecavir-resistance (ETVr) is observed clinically, likely due to its potency and a requirement for multiple resistance changes to overcome suppression. Changes in the HBV polymerase reverse-transcriptase (RT) domain involve lamivudine-resistance (LVDr) substitutions in the conserved YMDD motif (M204V/I +/- L180M), plus an additional ETV-specific change at residues T184, S202 or M250. These substitutions surround the putative dNTP binding site or primer grip regions of the HBV RT.

METHODS/PRINCIPAL FINDINGS: To determine the mechanistic basis for ETVr, wildtype, lamivudine-resistant (M204V, L180M) and ETVr HBVs were studied using in vitro RT enzyme and cell culture assays, as well as molecular modeling. Resistance substitutions significantly reduced ETV incorporation and chain termination in HBV DNA and increased the ETV-TP inhibition constant (K(i)) for HBV RT. Resistant HBVs exhibited impaired replication in culture and reduced enzyme activity (k(cat)) in vitro. Molecular modeling of the HBV RT suggested that ETVr residue T184 was adjacent to and stabilized S202 within the LVDr YMDD loop. ETVr arose through steric changes at T184 or S202 or by disruption of hydrogen-bonding between the two, both of which repositioned the loop and reduced the ETV-triphosphate (ETV-TP) binding pocket. In contrast to T184 and S202 changes, ETVr at primer grip residue M250 was observed during RNA-directed DNA synthesis only. Experimentally, M250 changes also impacted the dNTP-binding site. Modeling suggested a novel mechanism for M250 resistance, whereby repositioning of the primer-template component of the dNTP-binding site shifted the ETV-TP binding pocket. No structural data are available to confirm the HBV RT modeling, however, results were consistent with phenotypic analysis of comprehensive substitutions of each ETVr position.

CONCLUSIONS

Altogether, ETVr occurred through exclusion of ETV-TP from the dNTP-binding site, through different, novel mechanisms that involved lamivudine-resistance, ETV-specific substitutions, and the primer-template.

摘要

背景

恩替卡韦(ETV)是一种脱氧鸟嘌呤类似物,竞争性抑制乙型肝炎病毒(HBV)聚合酶,导致 HBV DNA 链终止延迟。临床上观察到恩替卡韦耐药(ETVr)的高屏障,这可能是由于其效力以及需要多个耐药突变才能克服抑制作用。HBV 聚合酶逆转录酶(RT)结构域的变化涉及到在保守的 YMDD 基序(M204V/I +/- L180M)中出现拉米夫定耐药(LVDr)取代,以及在残基 T184、S202 或 M250 处出现额外的 ETV 特异性变化。这些取代物围绕 HBV RT 的假定 dNTP 结合位点或引物结合区域。

方法/主要发现:为了确定 ETVr 的机制基础,使用体外 RT 酶和细胞培养测定以及分子建模研究了野生型、拉米夫定耐药(M204V、L180M)和 ETVr HBV。耐药取代物显著降低了 HBV DNA 中的 ETV 掺入和链终止,并增加了 HBV RT 的 ETV-TP 抑制常数(K(i))。耐药 HBV 在培养中表现出复制受损,体外酶活性(k(cat))降低。HBV RT 的分子建模表明,ETVr 残基 T184 与 LVDr YMDD 环内的 S202 相邻并稳定。ETVr 是通过 T184 或 S202 的空间变化或两者之间氢键的破坏而产生的,这两种变化都会重新定位环并减少 ETV-三磷酸(ETV-TP)结合口袋。与 T184 和 S202 变化不同,只有在 RNA 指导的 DNA 合成过程中才观察到引物结合残基 M250 的 ETVr。实验上,M250 变化也影响 dNTP 结合位点。建模表明 M250 耐药的一种新机制,其中 dNTP 结合位点的引物-模板成分的重新定位改变了 ETV-TP 结合口袋。目前尚无结构数据可确认 HBV RT 建模,但结果与对每个 ETVr 位置的综合取代的表型分析一致。

结论

总之,ETVr 通过将 ETV-TP 排除在 dNTP 结合位点之外而发生,通过涉及拉米夫定耐药、ETV 特异性取代以及引物-模板的不同新机制发生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cfe/2820545/5a86887b7509/pone.0009195.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验