Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.
Department of Applied Biological Science, Tokyo University of Science, Noda, Japan.
J Virol. 2021 Jul 26;95(16):e0240120. doi: 10.1128/JVI.02401-20.
Entecavir (ETV) is a widely used anti-hepatitis B virus (HBV) drug. However, the emergence of resistant mutations in HBV reverse transcriptase (RT) results in treatment failure. To understand the mechanism underlying the development of ETV resistance by HBV RT, we analyzed the L180M, M204V, and L180M/M204V mutants using a combination of biochemical and structural techniques. ETV-triphosphate (ETV-TP) exhibited competitive inhibition with dGTP in both wild-type (wt) RT and M204V RT, as observed using Lineweaver-Burk plots. In contrast, RT L180M or L180M/M204V did not fit either competitive, uncompetitive, noncompetitive, or typical mixed inhibition, although ETV-TP was a competitive inhibitor of dGTP. Crystallography of HIV RT, mimicking HBV RT L180M/M204V, showed that the F115 bulge (F88 in HBV RT) caused by the F160M mutation induced deviated binding of dCTP from its normal tight binding position. Modeling of ETV-TP on the deviated dCTP indicated that a steric clash could occur between ETV-TP methylene and the 3'-end nucleoside ribose. ETV-TP is likely to interact primarily with HBV RT M171 prior to final accommodation at the deoxynucleoside triphosphate (dNTP) binding site (Y. Yasutake, S. Hattori, H. Hayashi, K. Matsuda, et al., Sci Rep 8:1624, 2018, https://doi.org/10.1038/s41598-018-19602-9). Therefore, in HBV RT L180M/M204V, ETV-TP may be stuck at M171, a residue that is conserved in almost all HBV isolates, leading to the strange inhibition pattern observed in the kinetic analysis. Collectively, our results provide novel insights into the mechanism of ETV resistance of HBV RT caused by L180M and M204V mutations. HBV infects 257 million people in the world, who suffer from elevated risks of liver cirrhosis and cancer. ETV is one of the most potent anti-HBV drugs, and ETV resistance mutations in HBV RT have been extensively studied. Nevertheless, the mechanisms underlying ETV resistance have remained elusive. We propose an attractive hypothesis to explain ETV resistance and effectiveness using a combination of kinetic and structural analyses. ETV is likely to have an additional interaction site, M171, beside the dNTP pocket of HBV RT; this finding indicates that nucleos(t)ide analogues (NAs) recognizing multiple interaction sites within RT may effectively inhibit the enzyme. Modification of ETV may render it more effective and enable the rational design of efficient NA inhibitors.
恩替卡韦(ETV)是一种广泛用于抗乙型肝炎病毒(HBV)的药物。然而,HBV 逆转录酶(RT)中出现耐药突变会导致治疗失败。为了了解 ETV 耐药性的HBV RT 发展机制,我们使用生化和结构技术组合分析了 L180M、M204V 和 L180M/M204V 突变体。ETV-三磷酸(ETV-TP)在野生型(wt)RT 和 M204V RT 中均表现出与 dGTP 的竞争性抑制作用,如 Lineweaver-Burk 图所示。相比之下,尽管 ETV-TP 是 dGTP 的竞争性抑制剂,但 RT L180M 或 L180M/M204V 均不符合竞争性、非竞争性、非竞争性或典型的混合抑制作用。尽管 HIV RT 的晶体结构模仿了 HBV RT L180M/M204V,但 F160M 突变引起的 F115 膨出(HBV RT 中的 F88)导致 dCTP 的结合位置偏离其正常紧密结合位置。在偏离的 dCTP 上对 ETV-TP 进行建模表明,ETV-TP 亚甲基和 3'-末端核苷核糖之间可能会发生空间位阻。ETV-TP 可能主要与 HBV RT M171 相互作用,然后最终在脱氧核苷三磷酸(dNTP)结合位点(Y. Yasutake、S. Hattori、H. Hayashi、K. Matsuda 等人,Sci Rep 8:1624, 2018, https://doi.org/10.1038/s41598-018-19602-9)上得到最终容纳。因此,在 HBV RT L180M/M204V 中,ETV-TP 可能卡在 M171 上,M171 在几乎所有 HBV 分离株中都保守,导致在动力学分析中观察到奇怪的抑制模式。总之,我们的结果为 L180M 和 M204V 突变导致的 HBV RT ETV 耐药机制提供了新的见解。HBV 感染全球 2.57 亿人,这些人患肝硬化和癌症的风险升高。ETV 是最有效的抗 HBV 药物之一,HBV RT 中的 ETV 耐药突变已被广泛研究。然而,ETV 耐药的机制仍然难以捉摸。我们提出了一个有吸引力的假设,通过动力学和结构分析的结合来解释 ETV 耐药性和有效性。ETV 可能在 HBV RT 的 dNTP 口袋旁边有一个额外的结合位点 M171;这一发现表明,识别 RT 内多个相互作用位点的核苷(酸)类似物(NA)可能有效地抑制该酶。ETV 的修饰可能使其更有效,并能够合理设计高效的 NA 抑制剂。