Suppr超能文献

完全耦合非谐振动态的和密度:三种实用方法的比较。

Sums and densities of fully coupled anharmonic vibrational states: a comparison of three practical methods.

机构信息

Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109-2143, USA.

出版信息

J Phys Chem A. 2010 Mar 18;114(10):3718-30. doi: 10.1021/jp100132s.

Abstract

Three practical methods for computing sums and densities of states of fully coupled anharmonic vibrations are compared. All three methods are based on the standard perturbation theory expansion for the vibrational energy. The accuracy of the perturbation theory expansion is tested by comparisons with computed eigenvalues and/or experimental vibrational constants taken from the literature for three- and four-atom molecules. For a number of examples, it is shown that the X(ij) terms in the perturbation theory expansion account for most of the anharmonicity, and the Y(ijk) terms also make a small contribution; contributions from the Z(ijkl) terms are insignificant. For molecules containing up to approximately 4 atoms, the sums and densities of states can be computed by using nested DO-loops, but this method becomes impractical for larger species. An efficient Monte Carlo method published previously is both accurate and practical for molecules containing 3-6 atoms but becomes too slow for larger species. The Wang-Landau algorithm is shown to be practical and reasonably accurate for molecules containing approximately 4 or more atoms, where the practical size limit (with a single computer processor) is currently on the order of perhaps 50 atoms. It is shown that the errors depend mostly on the average number of stochastic samples per energy bin. An automated version of the Wang-Landau algorithm is described. Also described are the effects of Fermi resonances and procedures for deperturbation of the anharmonicity coefficients. Computer codes based on all three algorithms are available from the authors and can also be downloaded freely from the Internet (http://aoss.engin.umich.edu/multiwell/).

摘要

三种计算完全耦合非谐振动和态密度和的实用方法进行了比较。所有三种方法都是基于振动能的标准微扰理论展开。通过与从文献中获得的三个和四个原子分子的计算本征值和/或实验振动常数的比较,测试了微扰理论展开的精度。对于许多例子,表明微扰理论展开中的 X(ij)项解释了大部分非谐性,而 Y(ijk)项也有很小的贡献;Z(ijkl)项的贡献可以忽略不计。对于包含大约 4 个原子的分子,可以通过嵌套 DO 循环来计算和态密度,但对于更大的分子,这种方法变得不切实际。以前发表的一种有效的蒙特卡罗方法既准确又适用于包含 3-6 个原子的分子,但对于更大的分子,它变得太慢了。Wang-Landau 算法被证明对于包含大约 4 个或更多原子的分子是实用和合理准确的,目前单台计算机处理器的实际大小限制约为 50 个原子左右。结果表明,误差主要取决于每个能量-bin 的随机样本的平均数量。描述了 Wang-Landau 算法的自动化版本。还描述了费米共振的影响和非谐性系数去微扰的程序。基于所有三种算法的计算机代码可从作者处获得,也可以从互联网上免费下载(http://aoss.engin.umich.edu/multiwell/)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验