Suppr超能文献

耦合对模型的精确理论化学。

Accurate theoretical chemistry with coupled pair models.

作者信息

Neese Frank, Hansen Andreas, Wennmohs Frank, Grimme Stefan

机构信息

Lehrstuhl für Theoretische Chemie, Institut für Physikalische and Theoretische Chemie, Universität Bonn, Wegelerstr. 12, D-53115 Bonn, Germany.

出版信息

Acc Chem Res. 2009 May 19;42(5):641-8. doi: 10.1021/ar800241t.

Abstract

Quantum chemistry has found its way into the everyday work of many experimental chemists. Calculations can predict the outcome of chemical reactions, afford insight into reaction mechanisms, and be used to interpret structure and bonding in molecules. Thus, contemporary theory offers tremendous opportunities in experimental chemical research. However, even with present-day computers and algorithms, we cannot solve the many particle Schrodinger equation exactly; inevitably some error is introduced in approximating the solutions of this equation. Thus, the accuracy of quantum chemical calculations is of critical importance. The affordable accuracy depends on molecular size and particularly on the total number of atoms: for orientation, ethanol has 9 atoms, aspirin 21 atoms, morphine 40 atoms, sildenafil 63 atoms, paclitaxel 113 atoms, insulin nearly 800 atoms, and quaternary hemoglobin almost 12,000 atoms. Currently, molecules with up to approximately 10 atoms can be very accurately studied by coupled cluster (CC) theory, approximately 100 atoms with second-order Møller-Plesset perturbation theory (MP2), approximately 1000 atoms with density functional theory (DFT), and beyond that number with semiempirical quantum chemistry and force-field methods. The overwhelming majority of present-day calculations in the 100-atom range use DFT. Although these methods have been very successful in quantum chemistry, they do not offer a well-defined hierarchy of calculations that allows one to systematically converge to the correct answer. Recently a number of rather spectacular failures of DFT methods have been found-even for seemingly simple systems such as hydrocarbons, fueling renewed interest in wave function-based methods that incorporate the relevant physics of electron correlation in a more systematic way. Thus, it would be highly desirable to fill the gap between 10 and 100 atoms with highly correlated ab initio methods. We have found that one of the earliest (and now almost forgotten) of this class of methods, the coupled-electron pair approximation (CEPA), performs exceedingly well in chemical applications. In this Account, we examine the performance of CEPA in chemical applications. One attractive feature of CEPA, in addition to its surprising accuracy that surpasses that of DFT and MP2 theory, is a simplicity that allows for straightforward and very efficient approximations and extensions to be developed; these are much more difficult or even impossible with the more rigorous CC theory. Thus, approximate CEPA methods can be implemented efficiently enough to allow for calculations on molecules of 50-100 atoms, perhaps the most common range in contemporary chemical research.

摘要

量子化学已融入许多实验化学家的日常工作之中。计算能够预测化学反应的结果,深入洞察反应机理,并用于解释分子的结构与键合。因此,当代理论在实验化学研究中提供了巨大的机遇。然而,即便借助当今的计算机和算法,我们仍无法精确求解多粒子薛定谔方程;在近似该方程的解时不可避免地会引入一些误差。所以,量子化学计算的准确性至关重要。可承受的精度取决于分子大小,尤其取决于原子总数:作为示例,乙醇有9个原子,阿司匹林有21个原子,吗啡有40个原子,西地那非有63个原子,紫杉醇有113个原子,胰岛素近800个原子,而四级血红蛋白几乎有12000个原子。当前,采用耦合簇(CC)理论能够非常精确地研究原子数多达约10个的分子,采用二阶莫勒 - 普莱塞特微扰理论(MP2)可研究约100个原子的分子,采用密度泛函理论(DFT)能研究约1000个原子的分子,超过这个数目则使用半经验量子化学和力场方法。当今在100个原子范围内的绝大多数计算都采用DFT。尽管这些方法在量子化学中非常成功,但它们并未提供一个定义明确的计算层次结构,使人们能够系统地趋近于正确答案。最近发现了DFT方法的一些相当惊人的失败案例——即便对于看似简单的系统,如碳氢化合物,这引发了人们对基于波函数的方法的新兴趣,这类方法能以更系统的方式纳入电子相关的相关物理知识。因此,非常希望能用高度相关的从头算方法填补10到100个原子之间的空白。我们发现这类方法中最早的(如今几乎被遗忘的)一种,即耦合电子对近似(CEPA),在化学应用中表现极为出色。在本综述中,我们考察了CEPA在化学应用中的性能。CEPA的一个吸引人的特点,除了其令人惊讶的准确性超过DFT和MP2理论之外,还在于其简单性,这使得能够开发出直接且非常有效的近似和扩展方法;而对于更严格的CC理论,这些则要困难得多甚至是不可能的。因此,近似的CEPA方法能够高效实现,从而可对50 - 100个原子的分子进行计算,这可能是当代化学研究中最常见的范围。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验