遗传关系信息对德国荷斯坦奶牛基因组育种值的影响。

The impact of genetic relationship information on genomic breeding values in German Holstein cattle.

机构信息

Institute of Animal Breeding and Husbandry, Christian-Albrechts University of Kiel, Olshausenstrasse 40, 24098 Kiel, Germany.

出版信息

Genet Sel Evol. 2010 Feb 19;42(1):5. doi: 10.1186/1297-9686-42-5.

Abstract

BACKGROUND

The impact of additive-genetic relationships captured by single nucleotide polymorphisms (SNPs) on the accuracy of genomic breeding values (GEBVs) has been demonstrated, but recent studies on data obtained from Holstein populations have ignored this fact. However, this impact and the accuracy of GEBVs due to linkage disequilibrium (LD), which is fairly persistent over generations, must be known to implement future breeding programs.

MATERIALS AND METHODS

The data set used to investigate these questions consisted of 3,863 German Holstein bulls genotyped for 54,001 SNPs, their pedigree and daughter yield deviations for milk yield, fat yield, protein yield and somatic cell score. A cross-validation methodology was applied, where the maximum additive-genetic relationship (amax) between bulls in training and validation was controlled. GEBVs were estimated by a Bayesian model averaging approach (BayesB) and an animal model using the genomic relationship matrix (G-BLUP). The accuracy of GEBVs due to LD was estimated by a regression approach using accuracy of GEBVs and accuracy of pedigree-based BLUP-EBVs.

RESULTS

Accuracy of GEBVs obtained by both BayesB and G-BLUP decreased with decreasing amax for all traits analyzed. The decay of accuracy tended to be larger for G-BLUP and with smaller training size. Differences between BayesB and G-BLUP became evident for the accuracy due to LD, where BayesB clearly outperformed G-BLUP with increasing training size.

CONCLUSIONS

GEBV accuracy of current selection candidates varies due to different additive-genetic relationships relative to the training data. Accuracy of future candidates can be lower than reported in previous studies because information from close relatives will not be available when selection on GEBVs is applied. A Bayesian model averaging approach exploits LD information considerably better than G-BLUP and thus is the most promising method. Cross-validations should account for family structure in the data to allow for long-lasting genomic based breeding plans in animal and plant breeding.

摘要

背景

单核苷酸多态性(SNP)所捕获的加性遗传关系对基因组育种值(GEBV)的准确性的影响已经得到证实,但最近对荷斯坦种群数据的研究忽略了这一事实。然而,这种影响以及由于连锁不平衡(LD)导致的 GEBV 的准确性,在几代人中相当持久,必须了解这些情况,以便实施未来的育种计划。

材料和方法

用于研究这些问题的数据集中包含了 3863 头德国荷斯坦公牛,这些公牛的基因型为 54001 个 SNP,其系谱和女儿的产奶量、脂肪产量、蛋白质产量和体细胞评分的偏差。应用了交叉验证方法,控制了训练和验证中的公牛之间的最大加性遗传关系(amax)。使用贝叶斯模型平均法(BayesB)和基于动物模型的基因组关系矩阵(G-BLUP)来估计 GEBV。使用 GEBV 的准确性和基于系谱的 BLUP-EBVs 的准确性的回归方法来估计由于 LD 导致的 GEBV 的准确性。

结果

对于所有分析的性状,使用 BayesB 和 G-BLUP 获得的 GEBV 的准确性都随着 amax 的降低而降低。准确性的衰减在 G-BLUP 中更大,并且随着训练规模的减小而更大。BayesB 和 G-BLUP 之间的差异在由于 LD 导致的准确性上变得明显,其中随着训练规模的增加,BayesB 明显优于 G-BLUP。

结论

当前选择候选者的 GEBV 准确性因相对于训练数据的不同加性遗传关系而有所不同。由于在应用 GEBV 选择时,近亲的信息不可用,因此未来候选者的准确性可能会低于之前研究报告的准确性。贝叶斯模型平均法可以更好地利用 LD 信息,因此是最有前途的方法。交叉验证应该考虑数据中的家族结构,以便在动植物育种中实现持久的基于基因组的育种计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3200/2838754/028a915463f3/1297-9686-42-5-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索