Suppr超能文献

基因组 BLUP 解码:探索基因组预测的黑箱。

Genomic BLUP decoded: a look into the black box of genomic prediction.

机构信息

Department of Animal Science and Center for Integrated Animal Genomics, Iowa State University, Ames, Iowa 50011, USA.

出版信息

Genetics. 2013 Jul;194(3):597-607. doi: 10.1534/genetics.113.152207. Epub 2013 May 2.

Abstract

Genomic best linear unbiased prediction (BLUP) is a statistical method that uses relationships between individuals calculated from single-nucleotide polymorphisms (SNPs) to capture relationships at quantitative trait loci (QTL). We show that genomic BLUP exploits not only linkage disequilibrium (LD) and additive-genetic relationships, but also cosegregation to capture relationships at QTL. Simulations were used to study the contributions of those types of information to accuracy of genomic estimated breeding values (GEBVs), their persistence over generations without retraining, and their effect on the correlation of GEBVs within families. We show that accuracy of GEBVs based on additive-genetic relationships can decline with increasing training data size and speculate that modeling polygenic effects via pedigree relationships jointly with genomic breeding values using Bayesian methods may prevent that decline. Cosegregation information from half sibs contributes little to accuracy of GEBVs in current dairy cattle breeding schemes but from full sibs it contributes considerably to accuracy within family in corn breeding. Cosegregation information also declines with increasing training data size, and its persistence over generations is lower than that of LD, suggesting the need to model LD and cosegregation explicitly. The correlation between GEBVs within families depends largely on additive-genetic relationship information, which is determined by the effective number of SNPs and training data size. As genomic BLUP cannot capture short-range LD information well, we recommend Bayesian methods with t-distributed priors.

摘要

基因组最佳线性无偏预测(BLUP)是一种统计方法,它利用从单核苷酸多态性(SNP)计算得出的个体间关系来捕获数量性状基因座(QTL)上的关系。我们表明,基因组 BLUP 不仅利用了连锁不平衡(LD)和加性遗传关系,还利用了共分离来捕获 QTL 上的关系。模拟研究了这些信息类型对基因组估计育种值(GEBV)准确性的贡献、它们在没有重新训练的情况下在几代中的持久性,以及它们对家族内 GEBV 相关性的影响。我们表明,基于加性遗传关系的 GEBV 准确性可能会随着训练数据大小的增加而下降,我们推测通过贝叶斯方法联合系谱关系和基因组育种值来模拟多基因效应,可能会防止这种下降。半同胞的共分离信息对当前奶牛育种计划中 GEBV 的准确性贡献不大,但全同胞的共分离信息对玉米育种中家族内的准确性贡献很大。共分离信息也随着训练数据大小的增加而下降,其在几代中的持久性低于 LD,这表明需要明确地对 LD 和共分离进行建模。家族内 GEBV 之间的相关性在很大程度上取决于加性遗传关系信息,该信息由有效 SNP 数量和训练数据大小决定。由于基因组 BLUP 不能很好地捕捉短程 LD 信息,因此我们建议使用具有 t 分布先验的贝叶斯方法。

相似文献

1
Genomic BLUP decoded: a look into the black box of genomic prediction.
Genetics. 2013 Jul;194(3):597-607. doi: 10.1534/genetics.113.152207. Epub 2013 May 2.
4
The impact of genetic relationship information on genome-assisted breeding values.
Genetics. 2007 Dec;177(4):2389-97. doi: 10.1534/genetics.107.081190.
6
Different models of genetic variation and their effect on genomic evaluation.
Genet Sel Evol. 2011 May 17;43(1):18. doi: 10.1186/1297-9686-43-18.
7
Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a Barley case study.
Genetics. 2009 May;182(1):355-64. doi: 10.1534/genetics.108.098277. Epub 2009 Mar 18.
10
Modeling Epistasis in Genomic Selection.
Genetics. 2015 Oct;201(2):759-68. doi: 10.1534/genetics.115.177907. Epub 2015 Jul 27.

引用本文的文献

2
Environmental data provide marginal benefit for predicting climate adaptation.
PLoS Genet. 2025 Jun 9;21(6):e1011714. doi: 10.1371/journal.pgen.1011714. eCollection 2025 Jun.
3
Breaking down data silos across companies to train genome-wide predictions: A feasibility study in wheat.
Plant Biotechnol J. 2025 Jul;23(7):2704-2719. doi: 10.1111/pbi.70095. Epub 2025 Apr 20.
6
Rapid cycling genomic selection in maize landraces.
Theor Appl Genet. 2025 Mar 17;138(4):75. doi: 10.1007/s00122-025-04855-6.
8
Practical Considerations When Using Mendelian Sampling Variances for Selection Decisions in Genomic Selection Programs.
J Anim Breed Genet. 2025 Jul;142(4):419-437. doi: 10.1111/jbg.12913. Epub 2024 Dec 2.
9
Megavariate methods capture complex genotype-by-environment interactions.
Genetics. 2025 Apr 17;229(4). doi: 10.1093/genetics/iyae179.
10
Promises and challenges of crop translational genomics.
Nature. 2024 Dec;636(8043):585-593. doi: 10.1038/s41586-024-07713-5. Epub 2024 Sep 23.

本文引用的文献

1
Using whole-genome sequence data to predict quantitative trait phenotypes in Drosophila melanogaster.
PLoS Genet. 2012;8(5):e1002685. doi: 10.1371/journal.pgen.1002685. Epub 2012 May 3.
4
Using the genomic relationship matrix to predict the accuracy of genomic selection.
J Anim Breed Genet. 2011 Dec;128(6):409-21. doi: 10.1111/j.1439-0388.2011.00964.x.
5
Accuracy of multi-trait genomic selection using different methods.
Genet Sel Evol. 2011 Jul 5;43(1):26. doi: 10.1186/1297-9686-43-26.
6
Extension of the bayesian alphabet for genomic selection.
BMC Bioinformatics. 2011 May 23;12:186. doi: 10.1186/1471-2105-12-186.
7
Genome-based prediction of testcross values in maize.
Theor Appl Genet. 2011 Jul;123(2):339-50. doi: 10.1007/s00122-011-1587-7. Epub 2011 Apr 20.
8
Variation in actual relationship as a consequence of Mendelian sampling and linkage.
Genet Res (Camb). 2011 Feb;93(1):47-64. doi: 10.1017/S0016672310000480.
9
Common SNPs explain a large proportion of the heritability for human height.
Nat Genet. 2010 Jul;42(7):565-9. doi: 10.1038/ng.608. Epub 2010 Jun 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验