文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

时变磁场对内细胞器产生的跨膜电位:模型研究。

Transmembrane potential induced on the internal organelle by a time-varying magnetic field: a model study.

机构信息

Toronto Western Research Institute, University Health Network, Ontario, Canada .

出版信息

J Neuroeng Rehabil. 2010 Feb 20;7:12. doi: 10.1186/1743-0003-7-12.


DOI:10.1186/1743-0003-7-12
PMID:20170538
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC2836366/
Abstract

BACKGROUND: When a cell is exposed to a time-varying magnetic field, this leads to an induced voltage on the cytoplasmic membrane, as well as on the membranes of the internal organelles, such as mitochondria. These potential changes in the organelles could have a significant impact on their functionality. However, a quantitative analysis on the magnetically-induced membrane potential on the internal organelles has not been performed. METHODS: Using a two-shell model, we provided the first analytical solution for the transmembrane potential in the organelle membrane induced by a time-varying magnetic field. We then analyzed factors that impact on the polarization of the organelle, including the frequency of the magnetic field, the presence of the outer cytoplasmic membrane, and electrical and geometrical parameters of the cytoplasmic membrane and the organelle membrane. RESULTS: The amount of polarization in the organelle was less than its counterpart in the cytoplasmic membrane. This was largely due to the presence of the cell membrane, which "shielded" the internal organelle from excessive polarization by the field. Organelle polarization was largely dependent on the frequency of the magnetic field, and its polarization was not significant under the low frequency band used for transcranial magnetic stimulation (TMS). Both the properties of the cytoplasmic and the organelle membranes affect the polarization of the internal organelle in a frequency-dependent manner. CONCLUSIONS: The work provided a theoretical framework and insights into factors affecting mitochondrial function under time-varying magnetic stimulation, and provided evidence that TMS does not affect normal mitochondrial functionality by altering its membrane potential.

摘要

背景:当细胞暴露于时变磁场中时,这会导致细胞质膜以及内部细胞器(如线粒体)的膜上产生感应电压。这些细胞器中的电位变化可能对其功能产生重大影响。然而,尚未对细胞器中磁诱导膜电位进行定量分析。

方法:使用双壳模型,我们提供了用于时变磁场诱导细胞器膜内跨膜电位的第一个解析解。然后,我们分析了影响细胞器极化的因素,包括磁场的频率、外细胞质膜的存在以及细胞质膜和细胞器膜的电学和几何参数。

结果:细胞器的极化量小于细胞质膜的极化量。这主要是由于细胞膜的存在,它通过磁场“屏蔽”了细胞器的过度极化。细胞器的极化主要取决于磁场的频率,而在用于经颅磁刺激(TMS)的低频带中,其极化不明显。细胞质膜和细胞器膜的性质都以频率依赖的方式影响内部细胞器的极化。

结论:该工作为研究时变磁场刺激下影响线粒体功能的因素提供了理论框架和见解,并提供了证据表明 TMS 通过改变其膜电位不会影响正常的线粒体功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01c8/2836366/b553b2ccddc4/1743-0003-7-12-7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01c8/2836366/5682ba05bc1e/1743-0003-7-12-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01c8/2836366/c4013a7253b6/1743-0003-7-12-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01c8/2836366/beb8ad014238/1743-0003-7-12-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01c8/2836366/3fa09011ed6c/1743-0003-7-12-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01c8/2836366/1cdff0ffc4b4/1743-0003-7-12-5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01c8/2836366/e70e6d3a425c/1743-0003-7-12-6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01c8/2836366/b553b2ccddc4/1743-0003-7-12-7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01c8/2836366/5682ba05bc1e/1743-0003-7-12-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01c8/2836366/c4013a7253b6/1743-0003-7-12-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01c8/2836366/beb8ad014238/1743-0003-7-12-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01c8/2836366/3fa09011ed6c/1743-0003-7-12-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01c8/2836366/1cdff0ffc4b4/1743-0003-7-12-5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01c8/2836366/e70e6d3a425c/1743-0003-7-12-6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01c8/2836366/b553b2ccddc4/1743-0003-7-12-7.jpg

相似文献

[1]
Transmembrane potential induced on the internal organelle by a time-varying magnetic field: a model study.

J Neuroeng Rehabil. 2010-2-20

[2]
Mechanisms for the intracellular manipulation of organelles by conventional electroporation.

Biophys J. 2010-6-2

[3]
Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields.

Biophys J. 2006-1-15

[4]
Transmembrane potential induced in a spherical cell model under low-frequency magnetic stimulation.

J Neural Eng. 2007-9

[5]
Effects of oscillatory electric fields on internal membranes: an analytical model.

Biophys J. 2008-3-15

[6]
Biomechanics of cell membrane under low-frequency time-varying magnetic field: a shell model.

Med Biol Eng Comput. 2016-12

[7]
[Analysis of frequency-domain and window effect for cellular inner and outer membranes subjected to pulsatile electric field].

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2011-2

[8]
Transmembrane potential generated by a magnetically induced transverse electric field in a cylindrical axonal model.

Med Biol Eng Comput. 2010-11-10

[9]
Sine wave electropermeabilization reveals the frequency-dependent response of the biological membranes.

Biochim Biophys Acta Biomembr. 2018-2-2

[10]
Theoretical analysis of transmembrane potential of cells exposed to nanosecond pulsed electric field.

Int J Radiat Biol. 2017-2

引用本文的文献

[1]
Restore axonal conductance in a locally demyelinated axon with electromagnetic stimulation.

J Neural Eng. 2025-2-14

[2]
Cellular and Molecular Effects of Magnetic Fields.

Int J Mol Sci. 2024-8-17

[3]
Neuron matters: neuromodulation with electromagnetic stimulation must consider neurons as dynamic identities.

J Neuroeng Rehabil. 2022-11-3

[4]
Finding the Location of Axonal Activation by a Miniature Magnetic Coil.

Front Comput Neurosci. 2022-6-29

[5]
Application of the Taguchi method to explore a robust condition of tumor-treating field treatment.

PLoS One. 2022

[6]
Irreversible Electroporation: Background, Theory, and Review of Recent Developments in Clinical Oncology.

Bioelectricity. 2019-12-1

[7]
Changes in Global and Nodal Networks in Patients With Unipolar Depression After 3-Week Repeated Transcranial Magnetic Stimulation Treatment.

Front Psychiatry. 2019-10-9

[8]
Neuromodulation with electromagnetic stimulation for seizure suppression: From electrode to magnetic coil.

IBRO Rep. 2019-7-12

[9]
Shielding effects of myelin sheath on axolemma depolarization under transverse electric field stimulation.

PeerJ. 2018-12-3

[10]
Modeling of Transmembrane Potential in Realistic Multicellular Structures before Electroporation.

Biophys J. 2016-11-15

本文引用的文献

[1]
Using non-invasive brain stimulation to augment motor training-induced plasticity.

J Neuroeng Rehabil. 2009-3-17

[2]
Regulation of intracellular calcium concentration by nanosecond pulsed electric fields.

Biochim Biophys Acta. 2009-5

[3]
Transcranial magnetic stimulation improves naming in Alzheimer disease patients at different stages of cognitive decline.

Eur J Neurol. 2008-12

[4]
Effects of repetitive transcranial magnetic stimulation on adenosine triphosphate content and microtubule associated protein-2 expression after cerebral ischemia-reperfusion injury in rat brain.

Chin Med J (Engl). 2008-7-20

[5]
Navigated TMS combined with EEG in mild cognitive impairment and Alzheimer's disease: a pilot study.

J Neurosci Methods. 2008-7-30

[6]
Effects of oscillatory electric fields on internal membranes: an analytical model.

Biophys J. 2008-3-15

[7]
Transmembrane potential induced in a spherical cell model under low-frequency magnetic stimulation.

J Neural Eng. 2007-9

[8]
Membrane permeabilization and cell damage by ultrashort electric field shocks.

Arch Biochem Biophys. 2007-9-1

[9]
"Nanosized voltmeter" enables cellular-wide electric field mapping.

Biophys J. 2007-8-15

[10]
Mitochondria: more than just a powerhouse.

Curr Biol. 2006-7-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索