Suppr超能文献

旋转质子泵ATP酶的机制。

The mechanism of rotating proton pumping ATPases.

作者信息

Nakanishi-Matsui Mayumi, Sekiya Mizuki, Nakamoto Robert K, Futai Masamitsu

机构信息

Department of Biochemistry, Faculty of Pharmaceutical Sciences, Iwate Medical University, Yahaba, Iwate 028-3694, Japan.

出版信息

Biochim Biophys Acta. 2010 Aug;1797(8):1343-52. doi: 10.1016/j.bbabio.2010.02.014. Epub 2010 Feb 17.

Abstract

Two proton pumps, the F-ATPase (ATP synthase, FoF1) and the V-ATPase (endomembrane proton pump), have different physiological functions, but are similar in subunit structure and mechanism. They are composed of a membrane extrinsic (F1 or V1) and a membrane intrinsic (Fo or Vo) sector, and couple catalysis of ATP synthesis or hydrolysis to proton transport by a rotational mechanism. The mechanism of rotation has been extensively studied by kinetic, thermodynamic and physiological approaches. Techniques for observing subunit rotation have been developed. Observations of micron-length actin filaments, or polystyrene or gold beads attached to rotor subunits have been highly informative of the rotational behavior of ATP hydrolysis-driven rotation. Single molecule FRET experiments between fluorescent probes attached to rotor and stator subunits have been used effectively in monitoring proton motive force-driven rotation in the ATP synthesis reaction. By using small gold beads with diameters of 40-60 nm, the E. coli F1 sector was found to rotate at surprisingly high speeds (>400 rps). This experimental system was used to assess the kinetics and thermodynamics of mutant enzymes. The results revealed that the enzymatic reaction steps and the timing of the domain interactions among the beta subunits, or between the beta and gamma subunits, are coordinated in a manner that lowers the activation energy for all steps and avoids deep energy wells through the rotationally-coupled steady-state reaction. In this review, we focus on the mechanism of steady-state F1-ATPase rotation, which maximizes the coupling efficiency between catalysis and rotation.

摘要

两种质子泵,即F-ATP酶(ATP合酶,FoF1)和V-ATP酶(内膜质子泵),具有不同的生理功能,但在亚基结构和机制上相似。它们由一个膜外(F1或V1)和一个膜内(Fo或Vo)部分组成,并通过旋转机制将ATP合成或水解的催化作用与质子转运偶联起来。旋转机制已通过动力学、热力学和生理学方法进行了广泛研究。已经开发出观察亚基旋转的技术。观察附着在转子亚基上的微米级肌动蛋白丝、聚苯乙烯或金珠,对于ATP水解驱动的旋转的旋转行为提供了丰富的信息。在附着于转子和定子亚基的荧光探针之间进行的单分子荧光共振能量转移实验,已有效地用于监测ATP合成反应中质子动力驱动的旋转。通过使用直径为40 - 60 nm的小金珠,发现大肠杆菌F1部分以惊人的高速(>400转/秒)旋转。该实验系统用于评估突变酶的动力学和热力学。结果表明,β亚基之间或β与γ亚基之间的酶促反应步骤和结构域相互作用的时间是协调的,这种方式降低了所有步骤的活化能,并通过旋转偶联的稳态反应避免了深能阱。在本综述中,我们关注稳态F1-ATP酶旋转的机制,该机制使催化与旋转之间的偶联效率最大化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验