Biotechnology Center, University of Technology, Tatzberg 47, 01307 Dresden, Germany.
J Mol Biol. 2010 Apr 9;397(4):878-82. doi: 10.1016/j.jmb.2010.02.023. Epub 2010 Feb 18.
The physical interactions that switch the functional state of membrane proteins are poorly understood. Previously, the pH-gating conformations of the beta-barrel forming outer membrane protein G (OmpG) from Escherichia coli have been solved. When the pH changes from neutral to acidic the flexible extracellular loop L6 folds into and closes the OmpG pore. Here, we used single-molecule force spectroscopy to structurally localize and quantify the interactions that are associated with the pH-dependent closure. At acidic pH, we detected a pH-dependent interaction at loop L6. This interaction changed the (un)folding of loop L6 and of beta-strands 11 and 12, which connect loop L6. All other interactions detected within OmpG were unaffected by changes in pH. These results provide a quantitative and mechanistic explanation of how pH-dependent interactions change the folding of a peptide loop to gate the transmembrane pore. They further demonstrate how the stability of OmpG is optimized so that pH changes modify only those interactions necessary to gate the transmembrane pore.
膜蛋白功能状态转换的物理相互作用还不太清楚。先前已经解决了来自大肠杆菌的β桶形成的外膜蛋白 G(OmpG)的 pH 门控构象。当 pH 值从中性变为酸性时,柔性细胞外环 L6 折叠并关闭 OmpG 孔。在这里,我们使用单分子力谱技术对与 pH 依赖性关闭相关的相互作用进行结构定位和定量。在酸性 pH 下,我们在环 L6 上检测到 pH 依赖性相互作用。这种相互作用改变了环 L6 和连接环 L6 的β-链 11 和 12 的(展开/折叠)。在 OmpG 中检测到的所有其他相互作用都不受 pH 变化的影响。这些结果提供了 pH 依赖性相互作用如何改变肽环折叠以门控跨膜孔的定量和机械解释。它们进一步证明了 OmpG 的稳定性是如何优化的,以便 pH 变化仅修饰那些对门控跨膜孔必需的相互作用。