Suppr超能文献

两阶段方法用于检测和减少光电容积脉搏波数据中的运动伪影。

Two-stage approach for detection and reduction of motion artifacts in photoplethysmographic data.

机构信息

Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA.

出版信息

IEEE Trans Biomed Eng. 2010 Aug;57(8):1867-76. doi: 10.1109/TBME.2009.2039568. Epub 2010 Feb 17.

Abstract

Corruption of photopleythysmograms (PPGs) by motion artifacts has been a serious obstacle to the reliable use of pulse oximeters for real-time, continuous state-of-health monitoring. In this paper, we propose an automated, two-stage PPG data processing method to minimize the effects of motion artifacts. The technique is based on our prior work related to motion artifact detection (stage 1) [R. Krishnan, B. Natarajan, and S. Warren, "Analysis and detection of motion artifacts in photoplethysmographic data using higher order statistics,'' in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP 2008), Las Vegas, Nevada, Apr. 2008, pp. 613-616] and motion artifact reduction (stage 2) [R. Krishnan, B. Natarajan, and S. Warren, "Motion artifact reduction in photoplethysmography using magnitude-based frequency domain independent component analysis,'' in Proc. 17th Int. Conf. Comput. Commun. Network, St. Thomas, Virgin Islands, Aug. 2008, pp. 1-5]. Regarding stage 1, we present novel and consistent techniques to detect the presence of motion artifact in PPGs given higher order statistical information present in the data. We analyze these data in the time and frequency domains (FDs) and identify metrics to distinguish between clean and motion-corrupted data. A Neyman-Pearson detection rule is formulated for each of the metrics. Furthermore, by treating each of the metrics as observations from independent sensors, we employ hard fusion and soft fusion techniques presented in [Z. Chair and P. Varshney, "Optimal data fusion in multiple sensor detection systems,'' IEEE Trans. Aerosp. Electron. Syst., AES, vol. 1, no. 1, pp. 98-101, Jan. 1986] and [C. C. Lee and J. J. Chao, "Optimum local decision space partitioning for distributed detection,'' IEEE Trans. Aerosp. Electron. Syst., AES, vol. 25, no. 7, pp. 536-544, Jul. 1989], respectively, in order to fuse individual decisions into a global system decision. For stage two, we propose a motion artifact reduction method that is effective even in the presence of severe subject movement. The approach involves an enhanced preprocessing unit consisting of a motion detection unit (MDU, developed in this paper), period estimation unit, and Fourier series reconstruction unit. The MDU identifies clean data frames versus those corrupted with motion artifacts. The period estimation unit determines the fundamental frequency of a corrupt frame. The Fourier series reconstruction unit reconstructs the final preprocessed signal by utilizing the spectrum variability of the pulse waveform. Preprocessed data are then fed to a magnitude-based FD independent component analysis unit. This helps reduce motion artifacts present at the frequencies of the reconstruction components. Experimental results are presented to demonstrate the efficacy of the overall motion artifact reduction method.

摘要

运动伪影会使光电容积脉搏波图(PPG)发生失真,这一直是脉搏血氧仪实时、连续健康状态监测的严重障碍。在本文中,我们提出了一种自动的、两阶段 PPG 数据处理方法,以最大限度地减少运动伪影的影响。该技术基于我们之前与运动伪影检测(第一阶段)[R. Krishnan、B. Natarajan 和 S. Warren,“利用高阶统计量分析和检测光电容积脉搏波数据中的运动伪影”,Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP 2008), Las Vegas, Nevada, Apr. 2008, pp. 613-616]和运动伪影减少(第二阶段)[R. Krishnan、B. Natarajan 和 S. Warren,“利用基于幅度的频域独立分量分析减少光电容积脉搏图中的运动伪影”,Proc. 17th Int. Conf. Comput. Commun. Network, St. Thomas, Virgin Islands, Aug. 2008, pp. 1-5]相关的工作。关于第一阶段,我们提出了新的和一致的技术,利用数据中存在的高阶统计信息来检测 PPG 中运动伪影的存在。我们在时域(TD)和频域(FD)对这些数据进行分析,并确定区分干净数据和运动伪影数据的指标。为每个指标制定了一个 Neyman-Pearson 检测规则。此外,通过将每个指标视为来自独立传感器的观测值,我们采用了 [Z. Chair 和 P. Varshney,“在多传感器检测系统中的最优数据融合”,IEEE Trans. Aerosp. Electron. Syst.,AES,vol. 1,no. 1,pp. 98-101,Jan. 1986] 和 [C. C. Lee 和 J. J. Chao,“分布式检测中的最优局部决策空间划分”,IEEE Trans. Aerosp. Electron. Syst.,AES,vol. 25,no. 7,pp. 536-544,Jul. 1989]中提出的硬融合和软融合技术,将各个决策融合为一个全局系统决策。对于第二阶段,我们提出了一种运动伪影减少方法,即使在受试者剧烈运动的情况下也能有效减少运动伪影。该方法包括一个增强的预处理单元,该单元由运动检测单元(MDU,本文中开发)、周期估计单元和傅里叶级数重建单元组成。MDU 可以识别干净的数据帧与受到运动伪影污染的数据帧。周期估计单元确定受污染帧的基频。傅里叶级数重建单元通过利用脉搏波形的频谱可变性来重建最终的预处理信号。预处理后的数据被馈送到基于幅度的 FD 独立分量分析单元。这有助于减少重建分量频率处的运动伪影。实验结果表明了整体运动伪影减少方法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验