Suppr超能文献

人类血液 N 端蛋白质组采样。

Sampling the N-terminal proteome of human blood.

机构信息

Department of Pharmaceutical Chemistry, University of California, San Francisco, Byers Hall, 1700 4th Street, San Francisco, CA 94158, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4561-6. doi: 10.1073/pnas.0914495107. Epub 2010 Feb 19.

Abstract

The proteomes of blood plasma and serum represent a potential gold mine of biological and diagnostic information, but challenges such as dynamic range of protein concentration have hampered efforts to unlock this resource. Here we present a method to label and isolate N-terminal peptides from human plasma and serum. This process dramatically reduces the complexity of the sample by eliminating internal peptides. We identify 772 unique N-terminal peptides in 222 proteins, ranging over six orders of magnitude in abundance. This approach is highly suited for studying natural proteolysis in plasma and serum. We find internal cleavages in plasma proteins created by endo- and exopeptidases, providing information about the activities of proteolytic enzymes in blood, which may be correlated with disease states. We also find signatures of signal peptide cleavage, coagulation and complement activation, and other known proteolytic processes, in addition to a large number of cleavages that have not been reported previously, including over 200 cleavages of blood proteins by aminopeptidases. Finally, we can identify substrates from specific proteases by exogenous addition of the protease combined with N-terminal isolation and quantitative mass spectrometry. In this way we identified proteins cleaved in human plasma by membrane-type serine protease 1, an enzyme linked to cancer progression. These studies demonstrate the utility of direct N-terminal labeling by subtiligase to identify and characterize endogenous and exogenous proteolysis in human plasma and serum.

摘要

血浆和血清的蛋白质组代表了潜在的生物和诊断信息金矿,但蛋白质浓度的动态范围等挑战阻碍了开发这一资源的努力。在这里,我们提出了一种从人血浆和血清中标记和分离 N 端肽的方法。该过程通过消除内部肽极大地降低了样品的复杂性。我们在 222 种蛋白质中鉴定出 772 个独特的 N 端肽,丰度跨越六个数量级。这种方法非常适合研究血浆和血清中的天然蛋白水解。我们发现内肽酶和外肽酶在血浆蛋白中产生的内部切割,提供了关于血液中蛋白水解酶活性的信息,这些信息可能与疾病状态相关。我们还发现了信号肽切割、凝血和补体激活以及其他已知蛋白水解过程的特征,此外还发现了大量以前未报道过的切割,包括 200 多种由氨肽酶切割的血液蛋白。最后,我们可以通过外源性添加蛋白酶结合 N 端分离和定量质谱来鉴定特定蛋白酶的底物。通过这种方式,我们鉴定了人血浆中膜型丝氨酸蛋白酶 1 切割的蛋白质,该酶与癌症进展有关。这些研究表明,通过枯草杆菌蛋白酶的直接 N 端标记来鉴定和表征人血浆和血清中的内源性和外源性蛋白水解是有用的。

相似文献

1
Sampling the N-terminal proteome of human blood.
Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4561-6. doi: 10.1073/pnas.0914495107. Epub 2010 Feb 19.
2
Colon tumour secretopeptidome: insights into endogenous proteolytic cleavage events in the colon tumour microenvironment.
Biochim Biophys Acta. 2013 Nov;1834(11):2396-407. doi: 10.1016/j.bbapap.2013.05.006. Epub 2013 May 15.
3
Two-dimensional separation of human plasma proteins using iterative free-flow electrophoresis.
Proteomics. 2007 Dec;7(23):4218-27. doi: 10.1002/pmic.200700166.
5
Positional proteomics in the era of the human proteome project on the doorstep of precision medicine.
Biochimie. 2016 Mar;122:110-8. doi: 10.1016/j.biochi.2015.10.018. Epub 2015 Nov 14.
6
Sample preparation by in-gel digestion for mass spectrometry-based proteomics.
Anal Bioanal Chem. 2007 Oct;389(4):991-1002. doi: 10.1007/s00216-007-1451-4. Epub 2007 Jul 17.
7
The DegraBase: a database of proteolysis in healthy and apoptotic human cells.
Mol Cell Proteomics. 2013 Mar;12(3):813-24. doi: 10.1074/mcp.O112.024372. Epub 2012 Dec 20.

引用本文的文献

1
Engineered Proteins and Chemical Tools to Probe the Cell Surface Proteome.
Chem Rev. 2025 Apr 23;125(8):4069-4110. doi: 10.1021/acs.chemrev.4c00554. Epub 2025 Apr 3.
2
Molecular insights into the unique properties of the blood-circulating proteasome.
J Extracell Biol. 2025 Jan 27;4(1):e70034. doi: 10.1002/jex2.70034. eCollection 2025 Jan.
3
Application of N-Terminal Labeling Methods Provide Novel Insights into Endoproteolysis of the Prion Protein .
ACS Chem Neurosci. 2024 Jan 3;15(1):134-146. doi: 10.1021/acschemneuro.3c00533. Epub 2023 Dec 14.
6
N-Terminomics Strategies for Protease Substrates Profiling.
Molecules. 2021 Aug 3;26(15):4699. doi: 10.3390/molecules26154699.
7
A two-trick pony: lysosomal protease cathepsin B possesses surprising ligase activity.
RSC Chem Biol. 2021 Apr 1;2(2):606-611. doi: 10.1039/d0cb00224k. Epub 2021 Feb 17.
9
Deep profiling of protease substrate specificity enabled by dual random and scanned human proteome substrate phage libraries.
Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25464-25475. doi: 10.1073/pnas.2009279117. Epub 2020 Sep 24.
10
Influence of Blood Collection Methods and Long-Term Plasma Storage on Quorum-Sensing Peptide Stability.
ACS Omega. 2020 Jun 22;5(26):16120-16127. doi: 10.1021/acsomega.0c01723. eCollection 2020 Jul 7.

本文引用的文献

1
Methods for the proteomic identification of protease substrates.
Curr Opin Chem Biol. 2009 Dec;13(5-6):503-9. doi: 10.1016/j.cbpa.2009.07.026. Epub 2009 Sep 2.
2
Quantification of cardiovascular biomarkers in patient plasma by targeted mass spectrometry and stable isotope dilution.
Mol Cell Proteomics. 2009 Oct;8(10):2339-49. doi: 10.1074/mcp.M900140-MCP200. Epub 2009 Jul 13.
5
Global sequencing of proteolytic cleavage sites in apoptosis by specific labeling of protein N termini.
Cell. 2008 Sep 5;134(5):866-76. doi: 10.1016/j.cell.2008.08.012. Epub 2008 Aug 21.
6
High-abundance polypeptides of the human plasma proteome comprising the top 4 logs of polypeptide abundance.
Clin Chem. 2008 Oct;54(10):1608-16. doi: 10.1373/clinchem.2008.108175. Epub 2008 Aug 7.
7
Metadegradomics: toward in vivo quantitative degradomics of proteolytic post-translational modifications of the cancer proteome.
Mol Cell Proteomics. 2008 Oct;7(10):1925-51. doi: 10.1074/mcp.R800012-MCP200. Epub 2008 Jul 2.
8
Proteome-derived, database-searchable peptide libraries for identifying protease cleavage sites.
Nat Biotechnol. 2008 Jun;26(6):685-94. doi: 10.1038/nbt1408. Epub 2008 May 25.
10
Apoptosis: controlled demolition at the cellular level.
Nat Rev Mol Cell Biol. 2008 Mar;9(3):231-41. doi: 10.1038/nrm2312.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验