Karimkhani Arash, Moravvej-Farshi Mohammad Kazem
Advanced Device Simulation Lab, Electrical and Computer Engineering Department, Tarbiat Modares University, P.O. Box 14115-143, Tehran 1411713116, Iran.
Appl Opt. 2010 Feb 20;49(6):1012-9. doi: 10.1364/AO.49.001012.
We have obtained a simple numerical model that explains the temperature behavior of multi-quantum-dot (QD) nanophotonic devices whose operations are based on optical near-field (ONF) interactions between any two resonant QDs that are in thermal equilibrium. This model involves a set of coupled rate equations that govern the temporal behavior of the QDs' energy level occupancies. Under a certain operating condition, this simple model can substitute for the more complex density matrix (DM) approach in modeling the temperature dependence of the ONF energy transfer rate (R(ONF)) between any two resonant QDs in thermal equilibrium. The same applies for modeling the system state-filling time (tau(S)). Applying our simple model to a two-QD system, we have derived analytical formulas for the interdot and the intradot transfer rates at finite temperatures (T > or = 0). Furthermore, by assuming a unidirectional energy transport operating condition, we have also derived an analytic formula for calculating tau(S) for a two-QD system. To the best of our knowledge, this work is the first instance of reporting such analytic equations. Approximated values of tau(S) obtained from our simple analytic equation are in reasonable agreements with those calculated by the DM approach.
我们得到了一个简单的数值模型,该模型解释了多量子点(QD)纳米光子器件的温度行为,其操作基于处于热平衡的任意两个共振量子点之间的光学近场(ONF)相互作用。该模型涉及一组耦合速率方程,用于控制量子点能级占有率的时间行为。在一定的操作条件下,这个简单模型可以替代更复杂的密度矩阵(DM)方法,用于模拟处于热平衡的任意两个共振量子点之间的ONF能量转移速率(R(ONF))的温度依赖性。这同样适用于对系统状态填充时间(tau(S))进行建模。将我们的简单模型应用于双量子点系统,我们推导出了有限温度(T≥0)下的点间和点内转移速率的解析公式。此外,通过假设单向能量传输操作条件,我们还推导出了一个用于计算双量子点系统tau(S)的解析公式。据我们所知,这项工作是首次报道此类解析方程。从我们的简单解析方程获得的tau(S)近似值与通过DM方法计算的值合理吻合。