Naruse Makoto, Hori Hirokazu, Kobayashi Kiyoshi, Holmström Petter, Thylén Lars, Ohtsu Motoichi
National Institute of Information and Communications Technology, 4-2-1 Nukui-kita, Koganei, Tokyo 184-8795, Japan.
Opt Express. 2010 Nov 8;18 Suppl 4:A544-53. doi: 10.1364/OE.18.00A544.
We theoretically analyzed the lower bound of energy dissipation required for optical excitation transfer from smaller quantum dots to larger ones via optical near-field interactions. The coherent interaction between two quantum dots via optical near-fields results in unidirectional excitation transfer by an energy dissipation process occurring in the larger dot. We investigated the lower bound of this energy dissipation, or the intersublevel energy difference at the larger dot, when the excitation appearing in the larger dot originated from the excitation transfer via optical near-field interactions. We demonstrate that the energy dissipation could be as low as 25 μeV. Compared with the bit flip energy of an electrically wired device, this is about 10⁴ times more energy efficient. The achievable integration density of nanophotonic devices is also analyzed based on the energy dissipation and the error ratio while assuming a Yukawa-type potential for the optical near-field interactions.
我们从理论上分析了通过光学近场相互作用实现光激发从较小量子点转移到较大量子点所需的能量耗散下限。两个量子点之间通过光学近场的相干相互作用,会通过较大量子点中发生的能量耗散过程导致单向激发转移。当较大量子点中出现的激发源于通过光学近场相互作用的激发转移时,我们研究了这种能量耗散的下限,即较大量子点的子能级间能量差。我们证明能量耗散可以低至25微电子伏特。与有线电气设备的比特翻转能量相比,这在能量效率上高出约10⁴倍。在假设光学近场相互作用具有汤川型势的情况下,还基于能量耗散和误差率分析了纳米光子器件可实现的集成密度。