Center for Neuroscience/Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.
PLoS Comput Biol. 2010 Feb 19;6(2):e1000679. doi: 10.1371/journal.pcbi.1000679.
Synchronization of 30-80 Hz oscillatory activity of the principle neurons in the olfactory bulb (mitral cells) is believed to be important for odor discrimination. Previous theoretical studies of these fast rhythms in other brain areas have proposed that principle neuron synchrony can be mediated by short-latency, rapidly decaying inhibition. This phasic inhibition provides a narrow time window for the principle neurons to fire, thus promoting synchrony. However, in the olfactory bulb, the inhibitory granule cells produce long lasting, small amplitude, asynchronous and aperiodic inhibitory input and thus the narrow time window that is required to synchronize spiking does not exist. Instead, it has been suggested that correlated output of the granule cells could serve to synchronize uncoupled mitral cells through a mechanism called "stochastic synchronization", wherein the synchronization arises through correlation of inputs to two neural oscillators. Almost all work on synchrony due to correlations presumes that the correlation is imposed and fixed. Building on theory and experiments that we and others have developed, we show that increased synchrony in the mitral cells could produce an increase in granule cell activity for those granule cells that share a synchronous group of mitral cells. Common granule cell input increases the input correlation to the mitral cells and hence their synchrony by providing a positive feedback loop in correlation. Thus we demonstrate the emergence and temporal evolution of input correlation in recurrent networks with feedback. We explore several theoretical models of this idea, ranging from spiking models to an analytically tractable model.
嗅球(僧帽细胞)中主要神经元的 30-80Hz 振荡活动的同步被认为对气味辨别很重要。先前在其他大脑区域的这些快速节律的理论研究表明,主要神经元的同步可以通过短潜伏期、快速衰减的抑制来介导。这种相位抑制为主要神经元提供了一个狭窄的时间窗口来进行放电,从而促进了同步。然而,在嗅球中,抑制性颗粒细胞产生持续时间长、幅度小、异步和非周期性的抑制性输入,因此不存在同步放电所需的狭窄时间窗口。相反,有人提出,颗粒细胞的相关输出可以通过一种称为“随机同步”的机制来同步未耦合的僧帽细胞,其中同步是通过两个神经振荡器输入的相关性产生的。由于相关性而导致的同步的几乎所有工作都假设相关性是强加和固定的。基于我们和其他人开发的理论和实验,我们表明,对于那些与同步的僧帽细胞组共享的颗粒细胞,增加僧帽细胞中的同步性可以增加颗粒细胞的活动。共同的颗粒细胞输入通过相关性提供正反馈回路,从而增加了对僧帽细胞的输入相关性,因此增加了它们的同步性。因此,我们展示了具有反馈的递归网络中输入相关性的出现和时间演化。我们探索了这个想法的几个理论模型,从尖峰模型到可分析处理的模型。