Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology (a unit of CSIR), Kolkata, 700032, India.
J Mol Model. 2010 Sep;16(9):1539-47. doi: 10.1007/s00894-010-0649-0. Epub 2010 Feb 21.
Dihydrofolate reductase (DHFR) has been used successfully as a drug target in the area of anti-bacterial, anti-cancer and anti-malarial therapy. It also acts as a drug target for Leishmaniasis. Inhibition of DHFR leads to cell death through lack of thymine (nucleotide metabolism). Although the crystal structures of Leishmania major and Trypanosoma cruzi DHFR-thymidylate synthase (TS) have been resolved, to date there is no three-dimensional (3D)-structural information on DHFR-TS of Leishmania donovani chagasi, which causes visceral leishmaniasis. Our aim in this study was to model the 3D structure of L. donovani chagasi DHFR-TS, and to investigate the structural requirements for its inhibition. In this paper we describe a highly refined homology model of L. donovani chagasi DHFR-TS based on available crystallographic structures by using the Homology module of Insight II. Structural refinement and minimization of the generated L. donovani chagasi DHFR-TS model employed the Discover 3 module of Insight II and molecular dynamic simulations. The model was further validated through use of the PROCHECK, Verify_3D, PROSA, PSQS and ERRAT programs, which confirm that the model is reliable. Superimposition of the model structure with the templates L. major A chain, L. major B chain And T. cruzi A chain showed root mean square deviations of 0.69 A, 0.71 A and 1.11 A, respectively. Docking analysis of the L. donovani chagasi DHFR-TS model with methotrexate enabled us to identify specific residues, viz. Val156, Val30, Lys95, Lys75 and Arg97, within the L. donovani chagasi DHFR-TS binding pocket, that play an important role in ligand or substrate binding. Docking studies clearly indicated that these five residues are important determinants for binding as they have strong hydrogen bonding interactions with the ligand.
二氢叶酸还原酶(DHFR)已成功地作为抗菌、抗癌和抗疟治疗领域的药物靶点。它也作为利什曼病的药物靶点。DHFR 的抑制会导致胸腺嘧啶(核苷酸代谢)缺乏导致细胞死亡。尽管已经解析了主要利什曼原虫和克氏锥虫 DHFR-胸苷酸合酶(TS)的晶体结构,但迄今为止,尚无内脏利什曼病病原体恰加斯利什曼原虫 DHFR-TS 的三维(3D)结构信息。我们在这项研究中的目的是对 L. donovani chagasi 的 3D 结构进行建模,并研究其抑制的结构要求。在本文中,我们描述了一种基于现有晶体结构的 L. donovani chagasi DHFR-TS 的高度改进的同源模型,该模型是通过使用 Insight II 的 Homology 模块生成的。生成的 L. donovani chagasi DHFR-TS 模型的结构细化和最小化使用了 Insight II 的 Discover 3 模块和分子动力学模拟。该模型通过使用 PROCHECK、Verify_3D、PROSA、PSQS 和 ERRAT 程序进行了进一步验证,这些程序证实该模型是可靠的。将模型结构与模板 L. major A 链、L. major B 链和 T. cruzi A 链进行叠加,得到的均方根偏差分别为 0.69 A、0.71 A 和 1.11 A。对 L. donovani chagasi DHFR-TS 模型与甲氨蝶呤的对接分析使我们能够确定 L. donovani chagasi DHFR-TS 结合口袋内的特定残基,即 Val156、Val30、Lys95、Lys75 和 Arg97,它们在配体或底物结合中起着重要作用。对接研究清楚地表明,这五个残基是结合的重要决定因素,因为它们与配体具有强烈的氢键相互作用。