Suppr超能文献

恶性疟原虫二氢叶酸还原酶–胸苷酸合成酶中的静电通道化:布朗动力学和斯莫卢霍夫斯基模型

Electrostatic channeling in P. falciparum DHFR-TS: Brownian dynamics and Smoluchowski modeling.

作者信息

Metzger Vincent T, Eun Changsun, Kekenes-Huskey Peter M, Huber Gary, McCammon J Andrew

机构信息

Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California.

Howard Hughes Medical Institute, University of California San Diego, La Jolla, California.

出版信息

Biophys J. 2014 Nov 18;107(10):2394-402. doi: 10.1016/j.bpj.2014.09.039.

Abstract

We perform Brownian dynamics simulations and Smoluchowski continuum modeling of the bifunctional Plasmodium falciparum dihydrofolate reductase-thymidylate synthase (P. falciparum DHFR-TS) with the objective of understanding the electrostatic channeling of dihydrofolate generated at the TS active site to the DHFR active site. The results of Brownian dynamics simulations and Smoluchowski continuum modeling suggest that compared to Leishmania major DHFR-TS, P. falciparum DHFR-TS has a lower but significant electrostatic-mediated channeling efficiency (?15-25%) at physiological pH (7.0) and ionic strength (150 mM). We also find that removing the electric charges from key basic residues located between the DHFR and TS active sites significantly reduces the channeling efficiency of P. falciparum DHFR-TS. Although several protozoan DHFR-TS enzymes are known to have similar tertiary and quaternary structure, subtle differences in structure, active-site geometry, and charge distribution appear to influence both electrostatic-mediated and proximity-based substrate channeling.

摘要

我们对恶性疟原虫双功能二氢叶酸还原酶-胸苷酸合成酶(P. falciparum DHFR-TS)进行了布朗动力学模拟和斯莫卢霍夫斯基连续介质建模,目的是了解在胸苷酸合成酶(TS)活性位点产生的二氢叶酸向二氢叶酸还原酶(DHFR)活性位点的静电通道运输情况。布朗动力学模拟和斯莫卢霍夫斯基连续介质建模的结果表明,与硕大利什曼原虫DHFR-TS相比,恶性疟原虫DHFR-TS在生理pH值(7.0)和离子强度(150 mM)下具有较低但显著的静电介导通道运输效率(约15%-25%)。我们还发现,去除位于DHFR和TS活性位点之间的关键碱性残基上的电荷会显著降低恶性疟原虫DHFR-TS的通道运输效率。尽管已知几种原生动物DHFR-TS酶具有相似的三级和四级结构,但结构、活性位点几何形状和电荷分布的细微差异似乎会影响静电介导的和基于邻近性的底物通道运输。

相似文献

1
Electrostatic channeling in P. falciparum DHFR-TS: Brownian dynamics and Smoluchowski modeling.
Biophys J. 2014 Nov 18;107(10):2394-402. doi: 10.1016/j.bpj.2014.09.039.
5
Electrostatic channeling in the bifunctional enzyme dihydrofolate reductase-thymidylate synthase.
J Mol Biol. 1996 Sep 27;262(3):370-4. doi: 10.1006/jmbi.1996.0520.
7
Substrate channeling between the human dihydrofolate reductase and thymidylate synthase.
Protein Sci. 2016 Jan;25(1):79-86. doi: 10.1002/pro.2720. Epub 2015 Jun 29.

引用本文的文献

2
Drug Discovery Efforts to Identify Novel Treatments for Neglected Tropical Diseases - Cysteine Protease Inhibitors.
Curr Med Chem. 2024;31(16):2170-2194. doi: 10.2174/0109298673249097231017051733.
3
Mechanisms and Effects of Substrate Channelling in Enzymatic Cascades.
Methods Mol Biol. 2022;2487:27-50. doi: 10.1007/978-1-0716-2269-8_3.
4
Crowding within synaptic junctions influences the degradation of nucleotides by CD39 and CD73 ectonucleotidases.
Biophys J. 2022 Jan 18;121(2):309-318. doi: 10.1016/j.bpj.2021.12.013. Epub 2021 Dec 16.
5
Temperature-Dependent Kinetic Isotope Effects in R67 Dihydrofolate Reductase from Path-Integral Simulations.
J Phys Chem B. 2021 Feb 11;125(5):1369-1377. doi: 10.1021/acs.jpcb.0c10318. Epub 2021 Feb 1.
6
Co-localization and confinement of ecto-nucleotidases modulate extracellular adenosine nucleotide distributions.
PLoS Comput Biol. 2020 Jun 25;16(6):e1007903. doi: 10.1371/journal.pcbi.1007903. eCollection 2020 Jun.
8
Can enzyme proximity accelerate cascade reactions?
Sci Rep. 2019 Jan 24;9(1):455. doi: 10.1038/s41598-018-37034-3.
9
Does metabolite channeling accelerate enzyme-catalyzed cascade reactions?
PLoS One. 2017 Feb 24;12(2):e0172673. doi: 10.1371/journal.pone.0172673. eCollection 2017.
10
Understanding ligand-receptor non-covalent binding kinetics using molecular modeling.
Front Biosci (Landmark Ed). 2017 Jan 1;22(6):960-981. doi: 10.2741/4527.

本文引用的文献

1
A model study of sequential enzyme reactions and electrostatic channeling.
J Chem Phys. 2014 Mar 14;140(10):105101. doi: 10.1063/1.4867286.
3
Influence of neighboring reactive particles on diffusion-limited reactions.
J Chem Phys. 2013 Jul 28;139(4):044117. doi: 10.1063/1.4816522.
5
Browndye: A Software Package for Brownian Dynamics.
Comput Phys Commun. 2010 Nov 1;181(11):1896-1905. doi: 10.1016/j.cpc.2010.07.022.
6
Channeling by Proximity: The Catalytic Advantages of Active Site Colocalization Using Brownian Dynamics.
J Phys Chem Lett. 2010 May 6;1(9):1332-1335. doi: 10.1021/jz1002007. Epub 2010 Apr 9.
7
Functional motifs in biochemical reaction networks.
Annu Rev Phys Chem. 2010;61:219-40. doi: 10.1146/annurev.physchem.012809.103457.
9
Diffusional channeling in the sulfate-activating complex: combined continuum modeling and coarse-grained brownian dynamics studies.
Biophys J. 2008 Nov 15;95(10):4659-67. doi: 10.1529/biophysj.108.140038. Epub 2008 Aug 8.
10
PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations.
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W522-5. doi: 10.1093/nar/gkm276. Epub 2007 May 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验