Department of Physiology and Pathophysiology, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany.
Pflugers Arch. 2010 Apr;459(5):751-63. doi: 10.1007/s00424-010-0785-5. Epub 2010 Feb 23.
The generation of action potentials in nociceptive neurons is accomplished by the tetrodotoxin-resistant (TTXr) Na+ channel Na(v)1.8. Following nerve injury, a redistribution of Na(v)1.8 from dorsal root ganglion (DRG) neurons into peripheral axons contributes to hyperexcitability and possibly to neuropathic pain. Na(v)1.8 has been reported to display a lower sensitivity to block by Na+ channel blockers as compared to TTX-sensitive (TTXs) Na(v) subunits. Furthermore, the antinociceptive efficacy of lidocaine is increased in Na(v)1.8-knockout mice. Here, we asked if Na(v)1.8 expression can reduce the susceptibility of sensory neurons to block by lidocaine. Employing wild-type and Na(v)1.8-knockout mice, we examined C-fibers in the skin-nerve preparation and Na+ currents in DRG neurons by patch-clamp recordings. Deletion of Na(v)1.8 resulted in an enhanced tonic block of Na+ currents in DRG neurons held at -80 mV but not at -140 mV. Accordingly, lower concentrations of lidocaine were required for a conduction block of C-fibers from Na(v)1.8-knockout as compared to wild-type mice. The efficacy of lidocaine on neurons lacking Na(v)1.8 was further increased by cold temperatures, due to a synergistic hyperpolarizing shift of the slow inactivation of TTXs Na+ channels by lidocaine and cooling. Finally, the approximately 90% reduction of TTXr Na+ currents in injured neurons from mice with a peripheral nerve injury was accompanied with an enhanced tonic block by lidocaine. In conclusion, our data demonstrate that the expression of Na(v)1.8 in sensory neurons can confine the antinociceptive efficacy of lidocaine and other Na+ channel blockers employed for pain treatment.
伤害感受神经元中动作电位的产生是通过河豚毒素抗性(TTXr)Na+通道 Na(v)1.8 实现的。在神经损伤后,Na(v)1.8 从背根神经节(DRG)神经元重新分布到外周轴突中,导致过度兴奋,可能导致神经性疼痛。据报道,与 TTX 敏感(TTXs)Na(v)亚基相比,Na(v)1.8 对 Na+通道阻滞剂的敏感性较低。此外,利多卡因在 Na(v)1.8 敲除小鼠中的镇痛效果增加。在这里,我们询问 Na(v)1.8 的表达是否可以降低感觉神经元对利多卡因阻断的敏感性。通过使用野生型和 Na(v)1.8 敲除小鼠,我们通过膜片钳记录检查了皮肤-神经标本中的 C 纤维和 DRG 神经元中的 Na+电流。Na(v)1.8 的缺失导致 DRG 神经元在-80 mV 保持时的 Na+电流的紧张性阻断增强,但在-140 mV 时则不会。因此,与野生型小鼠相比,Na(v)1.8 敲除小鼠的 C 纤维传导阻断需要更低浓度的利多卡因。由于利多卡因和冷却协同地使 TTXs Na+通道的缓慢失活产生超极化漂移,因此在低温下,缺乏 Na(v)1.8 的神经元对利多卡因的作用进一步增强。最后,在患有周围神经损伤的小鼠的损伤神经元中,TTXr Na+电流约减少 90%,同时伴随着利多卡因的紧张性阻断增强。总之,我们的数据表明,Na(v)1.8 在感觉神经元中的表达可以限制利多卡因和其他用于疼痛治疗的 Na+通道阻滞剂的镇痛效果。