Integrated Nanosystems Research Facility, Department of Electrical Engineering and Computer Science, University of California at Irvine , Irvine, California 92697, United States.
ACS Appl Mater Interfaces. 2017 May 3;9(17):14618-14632. doi: 10.1021/acsami.7b00268. Epub 2017 Apr 19.
Interfacing nanoelectronic devices with cell membranes can enable multiplexed detection of fundamental biological processes (such as signal transduction, electrophysiology, and import/export control) even down to the single ion channel level, which can lead to a variety of applications in pharmacology and clinical diagnosis. Therefore, it is necessary to understand and control the chemical and electrical interface between the device and the lipid bilayer membrane. Here, we develop a simple bottom-up approach to assemble tethered bilayer lipid membranes (tBLMs) on silicon wafers and glass slides, using a covalent tether attachment chemistry based on silane functionalization, followed by step-by-step stacking of two other functional molecular building blocks (oligo-poly(ethylene glycol) (PEG) and lipid). A standard vesicle fusion process was used to complete the bilayer formation. The monolayer synthetic scheme includes three well-established chemical reactions: self-assembly, epoxy-amine reaction, and EDC/NHS cross-linking reaction. All three reactions are facile and simple and can be easily implemented in many research labs, on the basis of common, commercially available precursors using mild reaction conditions. The oligo-PEG acts as the hydrophilic spacer, a key role in the formation of a homogeneous bilayer membrane. To explore the broad applicability of this approach, we have further demonstrated the formation of tBLMs on three common classes of (nano)electronic biosensor devices: indium-tin oxide-coated glass, silicon nanoribbon devices, and high-density single-walled carbon nanotubes (SWNT) networks on glass. More importantly, we incorporated alemethicin into tBLMs and realized the real-time recording of single ion channel activity with high sensitivity and high temporal resolution using the tBLMs/SWNT network transistor hybrid platform. This approach can provide a covalently bonded lipid coating on the oxide layer of nanoelectronic devices, which will enable a variety of applications in the emerging field of nanoelectronic interfaces to electrophysiology.
将纳米电子设备与细胞膜接口,可以实现对基本生物过程(如信号转导、电生理学以及输入/输出控制)的多重检测,甚至可以达到单个离子通道的水平,这将在药理学和临床诊断中带来各种应用。因此,有必要了解和控制设备与脂质双层膜之间的化学和电气接口。在这里,我们开发了一种简单的自下而上的方法,在硅片和玻璃载玻片上组装固定化双层脂膜(tBLM),使用基于硅烷功能化的共价键接附化学,然后逐步堆叠另外两个功能分子构建基块(寡聚-聚(乙二醇)(PEG)和脂质)。使用标准的囊泡融合过程来完成双层形成。单层的合成方案包括三个成熟的化学反应:自组装、环氧-胺反应和 EDC/NHS 交联反应。所有三个反应都很容易实施,并且可以在许多研究实验室中轻松实施,基于温和反应条件下的常见商业前体制备。寡聚-PEG 作为亲水间隔物,在形成均匀双层膜中起关键作用。为了探索这种方法的广泛适用性,我们进一步在三种常见类型的(纳米)电子生物传感器设备上演示了 tBLM 的形成:氧化铟锡(ITO)涂覆玻璃、硅纳米带器件和高密度单壁碳纳米管(SWNT)网络玻璃。更重要的是,我们将alemethicin 掺入 tBLM 中,并使用 tBLM/SWNT 网络晶体管混合平台实现了单离子通道活性的实时记录,具有高灵敏度和高时间分辨率。这种方法可以在纳米电子设备的氧化物层上提供共价键合的脂质涂层,这将在新兴的纳米电子接口电生理学领域中带来各种应用。