Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
IEEE Trans Biomed Eng. 2010 Aug;57(8):1856-66. doi: 10.1109/TBME.2010.2043358. Epub 2010 Feb 18.
In this paper, we develop a robust signal space separation (rSSS) algorithm for real-time magnetoencephalography (MEG) data processing. rSSS is based on the spatial signal space separation (SSS) method and it applies robust regression to automatically detect and remove bad MEG channels so that the results of SSS are not distorted. We extend the existing robust regression algorithm via three important new contributions: 1) a low-rank solver that efficiently performs matrix operations; 2) a subspace iteration scheme that selects bad MEG channels using low-order spherical harmonic functions; and 3) a parallel computing implementation that simultaneously runs multiple tasks to further speed up numerical computation. Our experimental results based on both simulation and measurement data demonstrate that rSSS offers superior accuracy over the traditional SSS algorithm, if the MEG data contain significant outliers. Taking advantage of the proposed fast algorithm, rSSS achieves more than 75 x runtime speedup compared to a direct solver of robust regression. Even though rSSS is currently implemented with MATLAB, it already provides sufficient throughput for real-time applications.
在本文中,我们开发了一种用于实时脑磁图(MEG)数据处理的稳健信号空间分离(rSSS)算法。rSSS 基于空间信号空间分离(SSS)方法,并应用稳健回归自动检测和去除不良 MEG 通道,从而不会扭曲 SSS 的结果。我们通过三个重要的新贡献扩展了现有的稳健回归算法:1)一种低秩求解器,可有效地执行矩阵运算;2)一种子空间迭代方案,使用低阶球谐函数选择不良 MEG 通道;3)一种并行计算实现,可同时运行多个任务以进一步加快数值计算速度。我们基于模拟和测量数据的实验结果表明,如果 MEG 数据包含大量异常值,rSSS 比传统的 SSS 算法具有更高的准确性。利用所提出的快速算法,rSSS 与稳健回归的直接求解器相比实现了超过 75 倍的运行时加速。尽管 rSSS 目前是用 MATLAB 实现的,但它已经为实时应用提供了足够的吞吐量。