Suppr超能文献

生物正交化学:最新进展与未来方向。

Bioorthogonal chemistry: recent progress and future directions.

机构信息

Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, USA.

出版信息

Chem Commun (Camb). 2010 Mar 14;46(10):1589-600. doi: 10.1039/b925931g. Epub 2010 Jan 21.

Abstract

The ability to use covalent chemistry to label biomolecules selectively in their native habitats has greatly enhanced our understanding of biomolecular dynamics and function beyond what is possible with genetic tools alone. To attain the exquisite selectivity that is essential in this covalent approach a "bottom-up" two-step strategy has achieved many successes recently. In this approach, a bioorthogonal chemical functionality is built into life's basic building blocks-amino acids, nucleosides, lipids, and sugars-as well as coenzymes; after the incorporation, an array of biophysical probes are selectively appended to the tagged biomolecules via a suitable bioorthogonal reaction. While much has been accomplished in the expansion of non-natural building blocks carrying unique chemical moieties, the dearth of robust bioorthogonal reactions has limited both the scope and utility of this promising approach. Here, we summarize the recent progress in the development of bioorthogonal reactions and their applications in various biological systems. A major emphasis has been placed on the mechanistic and kinetic studies of these reactions with the hope that continuous improvements can be made with each reaction in the future. In view of the gap between the capabilities of the current repertoire of bioorthogonal reactions and the unmet needs of outstanding biological problems, we also strive to project the future directions of this rapidly developing field.

摘要

利用共价化学在生物分子的天然环境中进行选择性标记的能力,极大地增强了我们对生物分子动力学和功能的理解,超越了仅依靠遗传工具所能达到的程度。为了在这种共价方法中实现所需的高度选择性,最近采用了“自下而上”的两步策略取得了许多成功。在这种方法中,将生物正交化学官能团构建到生命的基本构建块中,如氨基酸、核苷、脂质和糖,以及辅酶中;在掺入之后,通过合适的生物正交反应,一系列生物物理探针被选择性地附加到标记的生物分子上。虽然在扩展携带独特化学部分的非天然构建块方面已经取得了很大的进展,但缺乏稳健的生物正交反应限制了这种有前途的方法的范围和实用性。在这里,我们总结了生物正交反应的最新进展及其在各种生物系统中的应用。我们主要强调了这些反应的机制和动力学研究,希望未来每个反应都能不断得到改进。鉴于当前生物正交反应的能力与未满足的突出生物学问题之间存在差距,我们还努力预测这个快速发展领域的未来方向。

相似文献

1
Bioorthogonal chemistry: recent progress and future directions.
Chem Commun (Camb). 2010 Mar 14;46(10):1589-600. doi: 10.1039/b925931g. Epub 2010 Jan 21.
2
Bioorthogonal chemistry: strategies and recent developments.
Chem Commun (Camb). 2013 Dec 7;49(94):11007-22. doi: 10.1039/c3cc44272a.
3
Azide-based bioorthogonal chemistry: Reactions and its advances in cellular and biomolecular imaging.
Biophys Rev (Melville). 2021 May 25;2(2):021301. doi: 10.1063/5.0050850. eCollection 2021 Jun.
4
Development and application of bond cleavage reactions in bioorthogonal chemistry.
Nat Chem Biol. 2016 Mar;12(3):129-37. doi: 10.1038/nchembio.2024.
5
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
6
Constructing New Bioorthogonal Reagents and Reactions.
Acc Chem Res. 2018 May 15;51(5):1073-1081. doi: 10.1021/acs.accounts.7b00606. Epub 2018 May 4.
7
From mechanism to mouse: a tale of two bioorthogonal reactions.
Acc Chem Res. 2011 Sep 20;44(9):666-76. doi: 10.1021/ar200148z. Epub 2011 Aug 15.
9
Versatile Bioconjugation Chemistries of ortho-Boronyl Aryl Ketones and Aldehydes.
Acc Chem Res. 2018 Sep 18;51(9):2198-2206. doi: 10.1021/acs.accounts.8b00154. Epub 2018 Aug 15.
10
Bioorthogonal chemistry.
Nat Rev Methods Primers. 2021;1. doi: 10.1038/s43586-021-00028-z. Epub 2021 Apr 15.

引用本文的文献

1
Functionalization of Polyethylene Terephthalate (PETE) Membranes for the Enhancement of Cellular Adhesion in Organ-on-a-Chip Devices.
ACS Appl Mater Interfaces. 2025 Jan 22;17(3):4529-4542. doi: 10.1021/acsami.4c17706. Epub 2025 Jan 7.
2
Giese-type alkylation of dehydroalanine derivatives via silane-mediated alkyl bromide activation.
Beilstein J Org Chem. 2024 Dec 17;20:3274-3280. doi: 10.3762/bjoc.20.271. eCollection 2024.
3
Prodrug activation by 4,4'-bipyridine-mediated aromatic nitro reduction.
Nat Commun. 2024 Oct 5;15(1):8643. doi: 10.1038/s41467-024-52604-y.
4
Engineered Proteins and Materials Utilizing Residue-Specific Noncanonical Amino Acid Incorporation.
Chem Rev. 2024 Aug 14;124(15):9113-9135. doi: 10.1021/acs.chemrev.3c00855. Epub 2024 Jul 15.
5
Designing Bioorthogonal Reactions for Biomedical Applications.
Research (Wash D C). 2023 Dec 15;6:0251. doi: 10.34133/research.0251. eCollection 2023.
6
GLUT5: structure, functions, diseases and potential applications.
Acta Biochim Biophys Sin (Shanghai). 2023 Oct 25;55(10):1519-1538. doi: 10.3724/abbs.2023158.
7
Recognition of a Clickable Abasic Site Analog by DNA Polymerases and DNA Repair Enzymes.
Int J Mol Sci. 2022 Nov 1;23(21):13353. doi: 10.3390/ijms232113353.
8
Transcriptome-wide profiling of -methyladenosine a selective chemical labeling method.
Chem Sci. 2022 Oct 5;13(41):12149-12157. doi: 10.1039/d2sc03181g. eCollection 2022 Oct 26.
9
Bioorthogonal chemistry.
Nat Rev Methods Primers. 2021;1. doi: 10.1038/s43586-021-00028-z. Epub 2021 Apr 15.
10
Unleashing the Power of Bond Cleavage Chemistry in Living Systems.
ACS Cent Sci. 2021 Jun 23;7(6):929-943. doi: 10.1021/acscentsci.1c00124. Epub 2021 Apr 30.

本文引用的文献

1
Direct observation of a photoinduced nonstabilized nitrile imine structure in the solid state.
J Am Chem Soc. 2009 Dec 23;131(50):18036-7. doi: 10.1021/ja9094523.
2
A convenient catalyst for aqueous and protein Suzuki-Miyaura cross-coupling.
J Am Chem Soc. 2009 Nov 18;131(45):16346-7. doi: 10.1021/ja907150m.
3
Bioorthogonal chemistry: fishing for selectivity in a sea of functionality.
Angew Chem Int Ed Engl. 2009;48(38):6974-98. doi: 10.1002/anie.200900942.
4
Metabolic labeling and direct imaging of choline phospholipids in vivo.
Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15332-7. doi: 10.1073/pnas.0907864106. Epub 2009 Aug 20.
5
Fast and sensitive pretargeted labeling of cancer cells through a tetrazine/trans-cyclooctene cycloaddition.
Angew Chem Int Ed Engl. 2009;48(38):7013-6. doi: 10.1002/anie.200903233.
6
Synthesis and evaluation of photoreactive tetrazole amino acids.
Org Lett. 2009 Aug 20;11(16):3570-3. doi: 10.1021/ol901300h.
7
Chemoselective Staudinger-phosphite reaction of azides for the phosphorylation of proteins.
Angew Chem Int Ed Engl. 2009;48(44):8234-9. doi: 10.1002/anie.200902118.
8
Fast alkene functionalization in vivo by Photoclick chemistry: HOMO lifting of nitrile imine dipoles.
Angew Chem Int Ed Engl. 2009;48(29):5330-3. doi: 10.1002/anie.200901220.
9
Click chemistry beyond metal-catalyzed cycloaddition.
Angew Chem Int Ed Engl. 2009;48(27):4900-8. doi: 10.1002/anie.200900755.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验