Suppr超能文献

果蝇翅成虫盘上视动性失明蛋白表达的空间不连续性会破坏上皮结构并促进细胞分选。

Spatial discontinuity of optomotor-blind expression in the Drosophila wing imaginal disc disrupts epithelial architecture and promotes cell sorting.

作者信息

Shen Jie, Dahmann Christian, Pflugfelder Gert O

机构信息

Department of Entomology, China Agricultural University, Beijing, China.

出版信息

BMC Dev Biol. 2010 Feb 23;10:23. doi: 10.1186/1471-213X-10-23.

Abstract

BACKGROUND

Decapentaplegic (Dpp) is one of the best characterized morphogens, required for dorso-ventral patterning of the Drosophila embryo and for anterior-posterior (A/P) patterning of the wing imaginal disc. In the larval wing pouch, the Dpp target gene optomotor-blind (omb) is generally assumed to be expressed in a step function above a certain threshold of Dpp signaling activity.

RESULTS

We show that the transcription factor Omb forms, in fact, a symmetrical gradient on both sides of the A/P compartment boundary. Disruptions of the Omb gradient lead to a re-organization of the epithelial cytoskeleton and to a retraction of cells toward the basal membrane suggesting that the Omb gradient is required for correct epithelial morphology. Moreover, by analysing the shape of omb gain- and loss-of-function clones, we find that Omb promotes cell sorting along the A/P axis in a concentration-dependent manner.

CONCLUSIONS

Our findings show that Omb distribution in the wing imaginal disc is described by a gradient rather than a step function. Graded Omb expression is necessary for normal cell morphogenesis and cell affinity and sharp spatial discontinuities must be avoided to allow normal wing development.

摘要

背景

“背腹分化缺陷蛋白”(Dpp)是特征最为明确的形态发生素之一,对果蝇胚胎的背腹模式形成以及翅成虫盘的前后(A/P)模式形成至关重要。在幼虫翅囊中,通常认为Dpp靶基因“视动盲”(omb)在Dpp信号活性高于特定阈值时以阶梯函数形式表达。

结果

我们发现,事实上转录因子Omb在A/P区室边界两侧形成对称梯度。Omb梯度的破坏会导致上皮细胞骨架重新组织,细胞向基底膜回缩,这表明正确的上皮形态需要Omb梯度。此外,通过分析omb功能获得和功能缺失克隆的形状,我们发现Omb以浓度依赖方式促进细胞沿A/P轴分选。

结论

我们的研究结果表明,翅成虫盘中Omb的分布由梯度而非阶梯函数描述。Omb的梯度表达对于正常细胞形态发生和细胞亲和力是必需的,必须避免尖锐的空间不连续性以确保翅的正常发育。

相似文献

2
brinker and optomotor-blind act coordinately to initiate development of the L5 wing vein primordium in Drosophila.
Development. 2004 May;131(9):2113-24. doi: 10.1242/dev.01100. Epub 2004 Apr 8.
5
Decapentaplegic and growth control in the developing Drosophila wing.
Nature. 2015 Nov 19;527(7578):375-8. doi: 10.1038/nature15730. Epub 2015 Nov 9.
7
The role of the T-box gene optomotor-blind in patterning the Drosophila wing.
Dev Biol. 2004 Apr 15;268(2):481-92. doi: 10.1016/j.ydbio.2004.01.005.
8
T-Box Genes in Drosophila Limb Development.
Curr Top Dev Biol. 2017;122:313-354. doi: 10.1016/bs.ctdb.2016.08.003. Epub 2016 Sep 9.
9
optomotor-blind suppresses instability at the A/P compartment boundary of the Drosophila wing.
Mech Dev. 2008 Mar-Apr;125(3-4):233-46. doi: 10.1016/j.mod.2007.11.006. Epub 2007 Nov 24.
10
The transcription factor optomotor-blind antagonizes Drosophila haltere growth by repressing decapentaplegic and hedgehog targets.
PLoS One. 2015 Mar 20;10(3):e0121239. doi: 10.1371/journal.pone.0121239. eCollection 2015.

引用本文的文献

1
Protocol for dissecting Drosophila pupae and visualizing RNA expression using hybridization chain reaction.
STAR Protoc. 2024 Dec 20;5(4):103456. doi: 10.1016/j.xpro.2024.103456. Epub 2024 Nov 21.
2
Elimination of aberrantly specified cell clones is independent of interfacial Myosin II accumulation.
J Cell Sci. 2023 Jul 1;136(13). doi: 10.1242/jcs.259935. Epub 2023 Jul 11.
3
ChIP-seq profiling of H3K4me3 and H3K27me3 in an invasive insect, .
Front Genet. 2023 Feb 23;14:1108104. doi: 10.3389/fgene.2023.1108104. eCollection 2023.
4
Transcriptome profiling for developmental stages Protaetia brevitarsis seulensis with focus on wing development and metamorphosis.
PLoS One. 2023 Mar 1;18(3):e0277815. doi: 10.1371/journal.pone.0277815. eCollection 2023.
6
Functional identity of hypothalamic melanocortin neurons depends on Tbx3.
Nat Metab. 2019 Feb;1(2):222-235. doi: 10.1038/s42255-018-0028-1. Epub 2019 Jan 28.
7
bantam microRNA is a negative regulator of the Drosophila decapentaplegic pathway.
Fly (Austin). 2018;12(2):105-117. doi: 10.1080/19336934.2018.1499370. Epub 2018 Aug 19.

本文引用的文献

1
Increased cell bond tension governs cell sorting at the Drosophila anteroposterior compartment boundary.
Curr Biol. 2009 Dec 1;19(22):1950-5. doi: 10.1016/j.cub.2009.10.021. Epub 2009 Oct 29.
2
Wingless signaling and the control of cell shape in Drosophila wing imaginal discs.
Dev Biol. 2009 Oct 1;334(1):161-73. doi: 10.1016/j.ydbio.2009.07.013. Epub 2009 Jul 21.
3
Dpp signaling promotes the cuboidal-to-columnar shape transition of Drosophila wing disc epithelia by regulating Rho1.
J Cell Sci. 2009 May 1;122(Pt 9):1362-73. doi: 10.1242/jcs.044271. Epub 2009 Apr 14.
4
Anterior-posterior positional information in the absence of a strong Bicoid gradient.
Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):3823-8. doi: 10.1073/pnas.0807878105. Epub 2009 Feb 23.
5
omb and circumstance.
J Neurogenet. 2009;23(1-2):15-33. doi: 10.1080/01677060802471619. Epub 2008 Dec 1.
7
Boundaries of Dachsous Cadherin activity modulate the Hippo signaling pathway to induce cell proliferation.
Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):14897-902. doi: 10.1073/pnas.0805201105. Epub 2008 Sep 22.
8
Medea SUMOylation restricts the signaling range of the Dpp morphogen in the Drosophila embryo.
Genes Dev. 2008 Sep 15;22(18):2578-90. doi: 10.1101/gad.494808.
10
Morphogen control of wing growth through the Fat signaling pathway.
Dev Cell. 2008 Aug;15(2):309-21. doi: 10.1016/j.devcel.2008.06.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验