Program in Molecular Pharmacology and Chemistry and Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.
Nature. 2010 Mar 18;464(7287):427-30. doi: 10.1038/nature08902.
Tumours with mutant BRAF are dependent on the RAF-MEK-ERK signalling pathway for their growth. We found that ATP-competitive RAF inhibitors inhibit ERK signalling in cells with mutant BRAF, but unexpectedly enhance signalling in cells with wild-type BRAF. Here we demonstrate the mechanistic basis for these findings. We used chemical genetic methods to show that drug-mediated transactivation of RAF dimers is responsible for paradoxical activation of the enzyme by inhibitors. Induction of ERK signalling requires direct binding of the drug to the ATP-binding site of one kinase of the dimer and is dependent on RAS activity. Drug binding to one member of RAF homodimers (CRAF-CRAF) or heterodimers (CRAF-BRAF) inhibits one protomer, but results in transactivation of the drug-free protomer. In BRAF(V600E) tumours, RAS is not activated, thus transactivation is minimal and ERK signalling is inhibited in cells exposed to RAF inhibitors. These results indicate that RAF inhibitors will be effective in tumours in which BRAF is mutated. Furthermore, because RAF inhibitors do not inhibit ERK signalling in other cells, the model predicts that they would have a higher therapeutic index and greater antitumour activity than mitogen-activated protein kinase (MEK) inhibitors, but could also cause toxicity due to MEK/ERK activation. These predictions have been borne out in a recent clinical trial of the RAF inhibitor PLX4032 (refs 4, 5). The model indicates that promotion of RAF dimerization by elevation of wild-type RAF expression or RAS activity could lead to drug resistance in mutant BRAF tumours. In agreement with this prediction, RAF inhibitors do not inhibit ERK signalling in cells that coexpress BRAF(V600E) and mutant RAS.
具有突变 BRAF 的肿瘤依赖 RAF-MEK-ERK 信号通路来生长。我们发现,ATP 竞争性 RAF 抑制剂抑制突变 BRAF 细胞中的 ERK 信号,但出乎意料地增强了野生型 BRAF 细胞中的信号。在这里,我们展示了这些发现的机制基础。我们使用化学遗传学方法表明,药物介导的 RAF 二聚体的转激活是抑制剂对酶产生反常激活的原因。ERK 信号的诱导需要药物直接结合二聚体中一个激酶的 ATP 结合位点,并且依赖于 RAS 活性。药物结合到 RAF 同源二聚体(CRAF-CRAF)或异源二聚体(CRAF-BRAF)的一个成员(CRAF-CRAF)或异源二聚体(CRAF-BRAF)上,抑制一个原聚体,但导致无药物原聚体的转激活。在 BRAF(V600E)肿瘤中,RAS 未被激活,因此在暴露于 RAF 抑制剂的细胞中,转激活很小,ERK 信号受到抑制。这些结果表明,RAF 抑制剂将在 BRAF 突变的肿瘤中有效。此外,由于 RAF 抑制剂不会抑制其他细胞中的 ERK 信号,该模型预测它们将比丝裂原激活的蛋白激酶 (MEK) 抑制剂具有更高的治疗指数和更大的抗肿瘤活性,但也可能由于 MEK/ERK 激活而引起毒性。最近对 RAF 抑制剂 PLX4032 的临床试验证实了这些预测(参考文献 4,5)。该模型表明,通过提高野生型 RAF 表达或 RAS 活性促进 RAF 二聚化可能导致突变 BRAF 肿瘤的耐药性。与这一预测一致,RAF 抑制剂不会抑制共表达 BRAF(V600E)和突变 RAS 的细胞中的 ERK 信号。