Suppr超能文献

揭示活细胞群体时间序列中的混沌属性。

Unmasking chaotic attributes in time series of living cell populations.

机构信息

Laboratoire Dynamiques cellulaires et Modélisation, Unité Mixte de Recherche 8080, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 757, Inserm, Université Paris-Sud, Orsay, France.

出版信息

PLoS One. 2010 Feb 22;5(2):e9346. doi: 10.1371/journal.pone.0009346.

Abstract

BACKGROUND

Long-range oscillations of the mammalian cell proliferation rate are commonly observed both in vivo and in vitro. Such complicated dynamics are generally the result of a combination of stochastic events and deterministic regulation. Assessing the role, if any, of chaotic regulation is difficult. However, unmasking chaotic dynamics is essential for analysis of cellular processes related to proliferation rate, including metabolic activity, telomere homeostasis, gene expression, and tumor growth.

METHODOLOGY/PRINCIPAL FINDINGS: Using a simple, original, nonlinear method based on return maps, we previously found a geometrical deterministic structure coordinating such fluctuations in populations of various cell types. However, nonlinearity and determinism are only necessary conditions for chaos; they do not by themselves constitute a proof of chaotic dynamics. Therefore, we used the same analytical method to analyze the oscillations of four well-known, low-dimensional, chaotic oscillators, originally designed in diverse settings and all possibly well-adapted to model the fluctuations of cell populations: the Lorenz, Rössler, Verhulst and Duffing oscillators. All four systems also display this geometrical structure, coordinating the oscillations of one or two variables of the oscillator. No such structure could be observed in periodic or stochastic fluctuations.

CONCLUSION/SIGNIFICANCE: Theoretical models predict various cell population dynamics, from stable through periodically oscillating to a chaotic regime. Periodic and stochastic fluctuations were first described long ago in various mammalian cells, but by contrast, chaotic regulation had not previously been evidenced. The findings with our nonlinear geometrical approach are entirely consistent with the notion that fluctuations of cell populations can be chaotically controlled.

摘要

背景

哺乳动物细胞增殖率的长程波动在体内和体外都很常见。这种复杂的动力学通常是随机事件和确定性调节的组合的结果。评估混沌调节的作用(如果有的话)是困难的。然而,揭示混沌动力学对于分析与增殖率相关的细胞过程是至关重要的,包括代谢活性、端粒稳态、基因表达和肿瘤生长。

方法/主要发现:我们之前使用一种简单的、原始的、基于返回映射的非线性方法,发现了一种几何确定性结构,它协调了各种细胞类型群体中的这种波动。然而,非线性和确定性只是混沌的必要条件;它们本身并不能构成混沌动力学的证明。因此,我们使用相同的分析方法来分析四个著名的、低维的、混沌振荡器的波动,这些振荡器最初是在不同的环境中设计的,并且都可能很好地适应模型的细胞群体波动:洛伦兹、罗斯勒、赫尔斯特和杜芬振荡器。所有四个系统也显示了这种协调振荡器中一个或两个变量波动的几何结构。在周期性或随机性波动中,无法观察到这种结构。

结论/意义:理论模型预测了各种细胞群体动力学,从稳定到周期性振荡再到混沌状态。周期性和随机性波动很久以前就在各种哺乳动物细胞中被描述过,但相比之下,混沌调节以前没有被证明过。我们的非线性几何方法的发现与这样一种观点完全一致,即细胞群体的波动可以受到混沌控制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f93/2825257/91524356815e/pone.0009346.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验