Suppr超能文献

米诺环素螯合 Ca2+,与膜结合,并通过形成 Ca2+依赖性离子通道使线粒体去极化。

Minocycline chelates Ca2+, binds to membranes, and depolarizes mitochondria by formation of Ca2+-dependent ion channels.

机构信息

A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia.

出版信息

J Bioenerg Biomembr. 2010 Apr;42(2):151-63. doi: 10.1007/s10863-010-9271-1. Epub 2010 Feb 24.

Abstract

Minocycline (an anti-inflammatory drug approved by the FDA) has been reported to be effective in mouse models of amyotrophic lateral sclerosis and Huntington disease. It has been suggested that the beneficial effects of minocycline are related to its ability to influence mitochondrial functioning. We tested the hypothesis that minocycline directly inhibits the Ca(2+)-induced permeability transition in rat liver mitochondria. Our data show that minocycline does not directly inhibit the mitochondrial permeability transition. However, minocycline has multiple effects on mitochondrial functioning. First, this drug chelates Ca(2+) ions. Secondly, minocycline, in a Ca(2+)-dependent manner, binds to mitochondrial membranes. Thirdly, minocycline decreases the proton-motive force by forming ion channels in the inner mitochondrial membrane. Channel formation was confirmed with two bilayer lipid membrane models. We show that minocycline, in the presence of Ca(2+), induces selective permeability for small ions. We suggest that the beneficial action of minocycline is related to the Ca(2+)-dependent partial uncoupling of mitochondria, which indirectly prevents induction of the mitochondrial permeability transition.

摘要

米诺环素(一种获得美国食品和药物管理局批准的抗炎药物)已被报道在肌萎缩侧索硬化症和亨廷顿病的小鼠模型中有效。有人认为,米诺环素的有益作用与其影响线粒体功能的能力有关。我们检验了米诺环素是否能直接抑制大鼠肝线粒体的 Ca(2+)诱导的通透性转换的假设。我们的数据表明,米诺环素不能直接抑制线粒体通透性转换。然而,米诺环素有多种影响线粒体功能的作用。首先,这种药物螯合 Ca(2+)离子。其次,米诺环素以 Ca(2+)依赖的方式与线粒体膜结合。第三,米诺环素通过在内膜上形成离子通道来降低质子动力势。用两种双层脂质膜模型证实了通道的形成。我们表明,米诺环素在 Ca(2+)存在的情况下,诱导小离子的选择性通透性。我们认为,米诺环素的有益作用与 Ca(2+)依赖性的线粒体部分解偶联有关,这间接防止了线粒体通透性转换的诱导。

相似文献

1
Minocycline chelates Ca2+, binds to membranes, and depolarizes mitochondria by formation of Ca2+-dependent ion channels.
J Bioenerg Biomembr. 2010 Apr;42(2):151-63. doi: 10.1007/s10863-010-9271-1. Epub 2010 Feb 24.
2
7
Mitochondrial Ca2+ Transport: Mechanisms, Molecular Structures, and Role in Cells.
Biochemistry (Mosc). 2019 Jun;84(6):593-607. doi: 10.1134/S0006297919060026.
8
Inhibitory modulation of the mitochondrial permeability transition by minocycline.
Biochem Pharmacol. 2009 Mar 1;77(5):888-96. doi: 10.1016/j.bcp.2008.11.003. Epub 2008 Nov 12.
10
Mitochondrial calcium channels.
FEBS Lett. 2010 May 17;584(10):1975-81. doi: 10.1016/j.febslet.2010.04.017. Epub 2010 Apr 11.

引用本文的文献

2
From Animal Models to Clinical Trials: The Potential of Antimicrobials in Multiple Sclerosis Treatment.
Biomedicines. 2023 Nov 16;11(11):3069. doi: 10.3390/biomedicines11113069.
3
Exploring the therapeutic potential of the mitochondrial transfer-associated enzymatic machinery in brain degeneration.
Front Physiol. 2023 Jul 28;14:1217815. doi: 10.3389/fphys.2023.1217815. eCollection 2023.
4
Challenges of repurposing tetracyclines for the treatment of Alzheimer's and Parkinson's disease.
J Neural Transm (Vienna). 2022 Jun;129(5-6):773-804. doi: 10.1007/s00702-021-02457-2. Epub 2022 Jan 4.
8
The therapeutic role of minocycline in Parkinson's disease.
Drugs Context. 2019 Mar 6;8:212553. doi: 10.7573/dic.212553. eCollection 2019.
10
Cell Death Pathways: a Novel Therapeutic Approach for Neuroscientists.
Mol Neurobiol. 2018 Jul;55(7):5767-5786. doi: 10.1007/s12035-017-0793-y. Epub 2017 Oct 19.

本文引用的文献

1
Impairment of mitochondrial function by minocycline.
FEBS J. 2009 Mar;276(6):1729-38. doi: 10.1111/j.1742-4658.2009.06904.x. Epub 2009 Feb 23.
2
Re-evaluation of mitochondrial permeability transition as a primary neuroprotective target of minocycline.
Neurobiol Dis. 2007 Jan;25(1):198-205. doi: 10.1016/j.nbd.2006.09.008. Epub 2006 Oct 24.
3
Tetracyclines: nonantibiotic properties and their clinical implications.
J Am Acad Dermatol. 2006 Feb;54(2):258-65. doi: 10.1016/j.jaad.2005.10.004.
4
Minocycline fails to protect cerebellar granular cell cultures against malonate-induced cell death.
Neurobiol Dis. 2005 Nov;20(2):384-91. doi: 10.1016/j.nbd.2005.03.019.
5
Minocycline up-regulates BCL-2 levels in mitochondria and attenuates male germ cell apoptosis.
Biochem Biophys Res Commun. 2005 Nov 18;337(2):663-9. doi: 10.1016/j.bbrc.2005.09.101. Epub 2005 Sep 26.
6
Comparative kinetic analysis reveals that inducer-specific ion release precedes the mitochondrial permeability transition.
Biochim Biophys Acta. 2005 Jul 15;1708(3):375-92. doi: 10.1016/j.bbabio.2005.05.009.
7
Involvement of mitochondrial potential and calcium buffering capacity in minocycline cytoprotective actions.
Neuroscience. 2005;133(4):959-67. doi: 10.1016/j.neuroscience.2005.03.019.
8
Effects of minocycline on Fas-mediated fulminant hepatitis in mice.
Br J Pharmacol. 2005 Jan;144(2):275-82. doi: 10.1038/sj.bjp.0706079.
9
Lack of evidence of direct mitochondrial involvement in the neuroprotective effect of minocycline.
Eur J Pharmacol. 2004 Nov 28;505(1-3):111-9. doi: 10.1016/j.ejphar.2004.10.039.
10
Minocycline up-regulates Bcl-2 and protects against cell death in mitochondria.
J Biol Chem. 2004 May 7;279(19):19948-54. doi: 10.1074/jbc.M313629200. Epub 2004 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验