Suppr超能文献

数量性状基因座区间定位的广义线性模型。

Generalized linear model for interval mapping of quantitative trait loci.

作者信息

Xu Shizhong, Hu Zhiqiu

机构信息

Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA.

出版信息

Theor Appl Genet. 2010 Jun;121(1):47-63. doi: 10.1007/s00122-010-1290-0. Epub 2010 Feb 24.

Abstract

We developed a generalized linear model of QTL mapping for discrete traits in line crossing experiments. Parameter estimation was achieved using two different algorithms, a mixture model-based EM (expectation-maximization) algorithm and a GEE (generalized estimating equation) algorithm under a heterogeneous residual variance model. The methods were developed using ordinal data, binary data, binomial data and Poisson data as examples. Applications of the methods to simulated as well as real data are presented. The two different algorithms were compared in the data analyses. In most situations, the two algorithms were indistinguishable, but when large QTL are located in large marker intervals, the mixture model-based EM algorithm can fail to converge to the correct solutions. Both algorithms were coded in C++ and interfaced with SAS as a user-defined SAS procedure called PROC QTL.

摘要

我们针对品系杂交实验中的离散性状开发了一种广义线性模型的QTL定位方法。在异质残差方差模型下,使用两种不同算法进行参数估计,一种是基于混合模型的期望最大化(EM)算法,另一种是广义估计方程(GEE)算法。以有序数据、二元数据、二项式数据和泊松数据为例开发了这些方法。展示了这些方法在模拟数据和实际数据中的应用。在数据分析中对这两种不同算法进行了比较。在大多数情况下,这两种算法难以区分,但当大的QTL位于大的标记区间时,基于混合模型的EM算法可能无法收敛到正确的解。两种算法均用C++编码,并作为名为PROC QTL的用户定义SAS过程与SAS接口。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32ba/2871098/04cea255d521/122_2010_1290_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验