Tiret L, Amouyel P, Rakotovao R, Cambien F, Ducimetière P
Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 258, Hôpital Broussais, Paris, France.
Am J Hum Genet. 1991 May;48(5):926-34.
One approach frequently used for identifying genetic factors involved in the process of a complex disease is the comparison of patients and controls for a number of genetic markers near a candidate gene. The analysis of such association studies raises some specific problems because of the fact that genotypic and not gametic data are generally available. We present a log-linear-model analysis providing a valid method for analyzing such studies. When studying the association of disease with one marker locus, the log-linear model allows one to test for the difference between allelic frequencies among affected and unaffected individuals, Hardy-Weinberg (H-W) equilibrium in both groups, and interaction between the association of alleles at the marker locus and disease. This interaction provides information about the dominance of the disease susceptibility locus, with dominance defined using the epidemiological notion of odds ratio. The degree of dominance measured at the marker locus depends on the strength of linkage disequilibrium between the marker locus and the disease locus. When studying the association of disease with several linked markers, the model becomes rapidly complex and uninterpretable unless it is assumed that affected and unaffected populations are in H-W equilibrium at each locus. This hypothesis must be tested before going ahead in the analysis. If it is not rejected, the log-linear model offers a stepwise method of identification of the parameters causing the difference between populations. This model can be extended to any number of loci, alleles, or populations.
一种常用于识别复杂疾病发生过程中涉及的遗传因素的方法是,比较候选基因附近多个遗传标记的患者和对照。由于通常可获得的是基因型而非配子数据这一事实,此类关联研究的分析引发了一些特定问题。我们提出一种对数线性模型分析方法,为分析此类研究提供了一种有效的方法。在研究疾病与一个标记位点的关联时,对数线性模型使人们能够检验患病个体和未患病个体之间的等位基因频率差异、两组中的哈迪-温伯格(H-W)平衡,以及标记位点处等位基因关联与疾病之间的相互作用。这种相互作用提供了有关疾病易感位点显性的信息,显性是使用优势比的流行病学概念来定义的。在标记位点处测量的显性程度取决于标记位点与疾病位点之间连锁不平衡的强度。在研究疾病与多个连锁标记的关联时,除非假设患病和未患病群体在每个位点都处于H-W平衡,否则该模型会迅速变得复杂且难以解释。在进行分析之前必须检验这个假设。如果该假设未被拒绝,对数线性模型提供了一种逐步识别导致群体间差异的参数的方法。该模型可以扩展到任意数量的位点、等位基因或群体。